期刊文献+

基于最小二乘支持向量机的机车轴承故障诊断 被引量:6

Fault diagnosis for locomotive bearings based on least squares support vector machine
下载PDF
导出
摘要 针对神经网络故障诊断存在的诸多问题,提出了基于最小二乘支持向量机的机车轴承故障诊断方法。采用最小二乘支持向量机方法建立多类故障分类器,对输入的特征向量信息进行分类,完成故障诊断功能。仿真证明了最小二乘支持向量机在小样本情况下比神经网络具有更强的泛化能力,用于故障诊断时在识别准确率和抗干扰能力方面有明显的优势。 For the problems of neural network for fault diagnosis,a method of fault diagnosis for locomotive bearing based on least squares support vector machine is proposed.The multi-class fault classifier is built based on least squares support vector machine.The inputing feature vectors are classed by the classifier and the function of classifier is completed.The simulation result not noly shows that the generalized ability of least squares support vector is better than neural network in the case of small samples ...
作者 雷烨 姜子运
出处 《电气传动自动化》 2009年第6期14-16,35,共4页 Electric Drive Automation
关键词 最小二乘支持向量机 故障诊断 多类故障分类 机车轴承 least squares support vector machine fault diagnosis multi-class fault classification locomotive bearing
  • 相关文献

参考文献11

二级参考文献95

共引文献2600

同被引文献73

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部