期刊文献+

Van der Pol-Duffing耦合系统的分岔与混沌控制 被引量:10

Chaos Controlling and Bifurcation of Van der Pol-Duffing System
下载PDF
导出
摘要 用平均法和Melnikov-Holmes方法选取了Van der Pol-Duffing非线性耦合系统的一组能发生混沌的参数.通过Poincaré截面图、分岔图、功率谱图和最大Lyapunov指数图,分析了系统在周期激振力作用下的非线性行为和运动复杂性.最后对系统的混沌运动状态进行了有效的控制. The research selected a set of parameters which could conduce chaos of Van der Pol - Duffing system by averaging method and Melnikov-Holmes method. The paper investigated the influence on the global dynamics behaviors by the change of forced excitation. The very rich and multiplex nonlinear dynamics of the Van der Pol-Duffing oscillator was investigated by theoretical and numerical simulation with the tiny change of the system parameters. The characteristics of chaos attractors of the system were analyzed by the Poincaré map. By simulating the bifurcation diagrams, we demonstrated exactly periodic and chaos motions under the presented parameters. By computing time series Lyapunov exponents and Lyapunov dimensions of Van der Pol-Duffing oscillator, we analyzed the chaos characteristics of the system. Finally, two effective controlling methods were applied to controlling chaos of the system.
出处 《江南大学学报(自然科学版)》 CAS 2007年第1期119-123,共5页 Joural of Jiangnan University (Natural Science Edition) 
基金 甘肃省自然科学基金项目(3ZS042-B25-049)
关键词 分岔 混沌 混沌控制 最大LYAPUNOV指数 POINCARÉ截面 bifurcation chaos chaos controll the leading Lyapunov exponent Poincaré map
  • 相关文献

参考文献7

二级参考文献20

  • 1唐驾时,尹小波.一类强非线性振动系统的分叉[J].力学学报,1996,28(3):363-369. 被引量:24
  • 2[1]Baiaj A K.Resonant parametric perturbations of the Hopf bifurcation[J].J.Math.Anal.Appl.115,1986:214-224. 被引量:1
  • 3[2]Kath W L. Resonance in periodically perturbed Hopf bifurcation [J].J.Appl.Math.65,1981,95-112. 被引量:1
  • 4[6]Guckenheimer J and Holmes P Nonlinear Oscillations.Dynamical systems and Bifurcation of Vector Fields[M].New York.(1983). 被引量:1
  • 5Nayfeh A H,Zavodney L D. The response of two-degree-of-freedom systems with quadratic non-linearities to a combination parametric resonance[J]. J Sound Vibration, 1986,107(2): 329~350 被引量:1
  • 6Streit D A,Bajaj A K,Krousgrill C M. Combination parametric resonance leading to periodic and chaotic response in two-degree-of-freedom systems with non-linearities[J]. J Sound Vibration, 1988, 124(2): 297~314 被引量:1
  • 7Nayfeh A H,Sanchez N E. Bifurcations in a forced softening duffing oscillator[J]. Int J Nonlinear Mechanics, 1989, 24(6): 483~497 被引量:1
  • 8Parker T S,Chua L O. Practical Numerical Algorithms for Chaotic Systems[M]. Springer-Verlag, 1989 被引量:1
  • 9Chen H S Y,Int J Nonlinear Mechanics,1996年,26卷,1期,59页 被引量:1
  • 10Chen S H,JSV,1996年,193卷,4期,751页 被引量:1

共引文献27

同被引文献77

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部