期刊文献+

一类非线性耦合系统的不稳定性质 被引量:1

The Instability of a Class of Nonlinear Coupled System
下载PDF
导出
摘要 讨论一类描述电磁波相互作用的非线性Schr dinger方程耦合系统iψt+Δψ+ψF(|ψ|2)=ψθ, -Δθ+a2θ=|ψ|2,其中,ψ(x,t)和θ(x,t)分别为复值和实值函数,a∈R,x∈Rn,t>0的初值问题,得到了在一定条件下解的不稳定性质. In this paper, we study a class of coupled system of the nonlinear Schrdinger equations as follows,iψt+Δψ+ψF(|ψ|2)=ψθ,-Δθ+a2θ=|ψ|2,which describe the interaction of electromagnetic wave:where ψ(x,t) and θ(x,t) are complex and realvalue functions respectively and a∈R,x∈Rn,t>0. The instability of the solution of the system is obtained.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2003年第3期228-231,共4页 Journal of Sichuan Normal University(Natural Science)
基金 四川省杰出青年学科带头人基金资助项目
关键词 非线性SCHRODINGER方程 耦合系统 爆破 Nonlinear Schrdinger equation Coupled system Blow-up
  • 相关文献

参考文献9

二级参考文献20

  • 1张健,王开端.相互作用波整体解的不存在性[J].四川师范大学学报(自然科学版),1994,17(3):10-13. 被引量:5
  • 2[1]Makhankov V G. Dynamics of classical solutions (in non-integrable systems)[J]. Phys Reports(Section C),1978,35(1):1~128. 被引量:1
  • 3[2]Kuznetsov E A, Rubenchik A M, Zakharov V E. Solition stability in plasmas and by drodynamics[J]. Phys Reports,1986,142:103. 被引量:1
  • 4[3]Abdullaev F Kh. Dynamical chaos of solitons and nonlinear periodic waves[J]. Phys Reports,1989,179(1):1~78. 被引量:1
  • 5[4]Guo B L, Yang L G. The global solution and asymptotic behaviors for one class of system of nonlinear evolution[J]. J Patia (Diff Equ),1997,10:232~246. 被引量:1
  • 6[5]Tsutsumi Y, Zhang J. Instability of optical solitons for two-wave interaction model in cubic nonlinear media[J]. Adv Math Sci Appl,1998,8(2):691~713. 被引量:1
  • 7[6]Radhakrishnan R, Sahadevan R, Lakshmanan M. Integrability and singularity structure of coupled nonlinear Schrdinger equations[J]. Chaos,Solitions & Fractals,1995,5(12):2315~2327. 被引量:1
  • 8[7]Weinstein M I. Nonlinear Schrdinger equations and sharp interpolation estimates[J]. Comm Math Phys,1983,87:567~576. 被引量:1
  • 9张健,四川师范大学学报,1994年,17卷,3期,10页 被引量:1
  • 10李大潜,非线性发展方程,1989年 被引量:1

共引文献30

同被引文献19

  • 1Zhang J. Stability of attractive Bose-Einstein Condensation[J]. J Star Phys,2000,101:731 - 746. 被引量:1
  • 2Kagan Y.Collapse and Bose-Einstein Condensation in a trapped Bose gas with r-ve scattering length[J]. Phys Bey Lett, 1998,81(5 ):933 - 937. 被引量:1
  • 3Saito H, Ueda M. Intermittent implosion and pattern formutlon of trapped Bose-Einstein Condensates with an attractive interaction[I].Phys Rev Lett,2001,86(8) : 1406 - 1409. 被引量:1
  • 4Tsutsumi M. Nonexistent of global solutions to the Cauchy problem for the damped nonlinear Schrōdinger equations[J]. Siam J Math Anal, 1984,15(2) :357 - 366. 被引量:1
  • 5Tsutsumi M. On global solutions to the initial-boundary value problem for the damped nonlinear Schrōdinger equations[ J ]. J Math Anal Appl, 1990,145 : 328 - 341. 被引量:1
  • 6Weinstein M I. Nonlinear Schrōdinger equations and sharp interpohtions estimates[J]. Conmaun Math Phys, 1983,87:567 - 576. 被引量:1
  • 7Zhang J. Sharp conditions of global existence for nonlinear Schrōdinger and Klein-Gordon equations[J]. Nonlinear Anal,2002,48:191 - 207. 被引量:1
  • 8Oh, Yong-G. C, auchy problem and Ehrenfest' s law of nonlinear Schrōdinger equations with potentials[J]. J Diff Eq, 1989,81:255 - 274. 被引量:1
  • 9Cazenave T. An introduction to nonlinear Schrōdinger equations[M]. Rie de Janeiro:Textos de Metodos matematicos,1989.22. 被引量:1
  • 10Kwong M K. Uniqueness of positive solutions of Au - u - u^p = 0 in R^N[J]. Arch Bat Mech Anal, 1989,105:243 - 266. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部