摘要
文章证明了如下结果:(1)如果X=Πσ∈ΣXσ是│Σ│-仿紧空间,则X是弱subortho-紧空间当且仅当F∈[Σ]<ω,X=Πσ∈F Xσ是弱subortho-紧空间。(2)X=Πi∈ωXi是可数仿紧的,则下列三条等价:X是弱subortho-紧的;F∈[ω]<ω,∏i∈F Xi是弱subortho-紧的;n∈ω,Πi≤n Xi是弱subortho-紧的。
The following conclusions are proved: (1) Let X=Πσ∈∑Xσ be |∑|-paracompact, then it is weakly subortho-compact if Πσ∈∑Xσ is weakly subortho-compact for every A↓F∈[ω]^〈ω(2) For countable paracompact X=Πi∈ω Xi the followings are equivalent: X is weakly subortho-compact. A↓F∈[ω]^〈ω,Пi∈F X i is weakly subortho-compact; A↓n∈ω,П1≤n Xi is subortho-compact.
出处
《四川理工学院学报(自然科学版)》
CAS
2007年第1期28-30,共3页
Journal of Sichuan University of Science & Engineering(Natural Science Edition)