摘要
论文的主要结果如下:设X是拓扑空间的逆向系{Xα,παβ,Λ}的极限且每个投射πα:X→Xα是开的满映射.设X是|Λ|-仿紧的且P表示下列四条性质中的任意一条:(i)点式集体正规性,(ii)σ-点式集体正规性;(iii)几乎可膨胀性;(iv)σ-几乎可膨胀性.若每个Xα具有性质P,则X具有性质P.同时还具有相应的遗传性质.
The paper proves the following main reults:Let X be the inverse limit of an inverse system {X_α,π~α_β,Λ} and each projection π_α:X→X_α is an open and onto map.Suppose X is |Λ| -paracompact.If each X_α is pointwise collectionwise normal (σ-pointwise collectionwise normal,almost expandable,σ-almost expandable),then X is pointwise collectionwise normal(σ-pointwise collectionwise normal,almost expandable,σ-almost expandable).Moreover, the analogous results for hereditarly properties are obtained.$$$$
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2005年第1期111-115,共5页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
关键词
逆极限
点式集体正规
σ-点式集体正规
几乎可膨胀
σ-几乎可膨胀
inverse limit
pointwise collectionwise normal
σ-pointwise collectionwise normal
almost expandable
σ-almost expandable