期刊文献+

一种基于相关度统计的告警关联规则挖掘算法 被引量:15

A Mining Algorithm with Alarm Association Rules Based on Statistical Correlation
下载PDF
导出
摘要 挖掘告警序列间关联规则的算法都受到最小支持度的限制,仅能够得到频繁告警序列间的关联规则.对此,提出了一种以高相关度、高置信度为条件,通过聚类找到特征相同的网元告警群,然后基于相关度统计的挖掘算法.实验结果表明,该算法可以高效、准确地挖掘出电信网络告警数据库中频繁和非频繁告警序列间的关联规则. Currently those algorithms to mine the alarm association rules are limited to the minimal support, so that they can only obtain the association rules among the frequently occurring alarm events, To address this problem, a new mining algorithm based on the statistical correlation was proposed, which firstly acquired the alarm net units with the same character by clustering; and then discovered the association rules from both high-frequency and low-frequency alarm events with the high correlativity and the high confidence. Experimental results demonstrated that this algorithm was efficient and accurate to mine the association rules among alarm events with both high-frequency and lowfrequency.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2007年第1期66-70,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(60475007) 教育部跨世纪人才基金项目
关键词 故障管理 关联规则 数据挖掘 相关度 fault management association rules data mining correlation
  • 相关文献

参考文献7

  • 1Agrawal R.Mining association rules between sets of items in large databases[C]∥Proceedings of the 1993 ACM SIGMOD Conference.Washington,D C:[s.n.],1993:207-216. 被引量:1
  • 2Hatonen K.Knowledge discovery from telecommunication network alarm databases[C]∥ICDE'96.New Orleans:[s.n.],1996:115-122. 被引量:1
  • 3Han Jiawei.Mining frequent patterns without candidate generation[C]∥Proceedings of the 2000 ACM SIGMOD.Dallas:[s.n.],2000:1-12. 被引量:1
  • 4Vilalta Ricardo,Ma Sheng,Hellerstein Joseph.Rule induction of computer events[C]∥Proceedings of the 12th IFIP/IEEE DSOM'2001.Nancy France:[s.n.],2001:225-235. 被引量:1
  • 5Antunes C,Oliveira A L.Inference of sequential association rules guided by context free grammars[C]∥ Proc Int'Conf on Grammatical Inference.Amsterdam:[s.n.],2002:1-13. 被引量:1
  • 6刘康平,李增智.网络告警序列中的频繁情景规则挖掘算法[J].小型微型计算机系统,2003,24(5):891-894. 被引量:9
  • 7陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法[J].软件学报,2004,15(8):1198-1207. 被引量:30

二级参考文献14

  • 1Jakobson G,Weissman M D.Alarm correlation[J].IEEE Network.1993,7(6):52-59. 被引量:1
  • 2Fayyad,Usama.Knowledge discovery in databases:an overview[Z].Lecture Notes in Artificial Intelligence,1997. 被引量:1
  • 3Cen Xian—dao.Network management protocol and application developemnt[M].Beijing:Tsinghua University Press.1998. 被引量:1
  • 4Agrawal R,Imielinski T,Swami A.Mining.association rules between sets of items in large databases[C].In:Buneman P,Jajodia S eds.Proceedings of ACM SIGMOD Corfference on Management of Data,New York:ACM,1993. 被引量:1
  • 5孙淑玲.代数结构[M].合肥:中国科技大学出版社,1990.. 被引量:2
  • 6Agrawa lR, Imielinski T, Swami A. Mining association rules between sets of items in large databases (C). In: Buneman P, Jajodia S,eds. Proc. of the ACM SIGMOD Conf. on Management of Data (SIGMOD'93). New York: ACM Press, 1993. 207~216. 被引量:1
  • 7Agrawa lR, Srikant R. Fast algorithms for mining association rules in large databases. In: Bocca JB, Jarke M, Zaniolo C, eds. Proc. of the 20th Int'l Conf. on Very Large Data Bases. Santiago: Morgan Kaufmann, 1994. 478~499. 被引量:1
  • 8Aly HH, Taha Y, Amr AA. Fast mining of association rules in large-scale problems. In: Abdel-Wahab H, Jeffay K, eds. Proc. of the 6th IEEE Symp. on Computers and Communications (ISCC 2001). New York: IEEE Computer Society Press, 2001. 107~113. 被引量:1
  • 9Tsai CF, Lin YC, Chen CP. A new fast algorithms for mining association rules in large databases. In: Kamel AE, Mellouli K, Borne P, eds. Proc. Of the 2002 IEEE Int'l Conf. On Systems, Man and Cybernetics (SMC 2002). IEEE Computer Society Press, 2002. 251 被引量:1
  • 10Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. In: Chen WD, Naughton J, Bernstein PA, eds. Proc. of the 2000 ACM SIGMOD Int'l Conf. on Management of Data (SIGMOD 2000). New York: ACM Press, 2000. 1~12. 被引量:1

共引文献36

同被引文献71

引证文献15

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部