期刊文献+

基于非局部均值滤波与神经网络的红外焦平面阵列非均匀性校正算法 被引量:8

Neural Network Nonuniformity Correction Algorithm for Infrared Focal Plane Array Based on Non-local Means Filter
下载PDF
导出
摘要 深入剖析传统神经网络非均匀性校正方法收敛速度慢以及易产生"鬼影"现象的主要原因,在此基础上,提出一种基于非局部均值滤波和神经网络的红外焦平面阵列非均匀性校正算法。为了加快收敛速度并减少"鬼影"现象,在神经网络隐含层,利用具有全局寻优且能保持边缘的非局部均值滤波器代替传统的均值滤波器以估计具有更高置信度的真值影像;同时设计可变学习率来自适应地调整每个探测元的非均匀性校正参数的迭代更新过程,以进一步消除"鬼影"。采用两组分别受高空间频率和低空间频率非均匀性干扰的真实红外序列图像进行实验。实验结果表明:相较于目前已有的方法,本文方法不仅具有较快的收敛速度,而且较大程度上抑制了"鬼影"现象的发生。 Traditional neural network nonuniformity correction method has the drawback of low convergence speed and is easy to generate ghosting artifacts. To overcome these problems, a neural network nonuniformity correction algorithm based on the non-local means filter is proposed for the infrared focal plane array in this study. To estimate the true image with a higher degree of confidence, the non-local means filter is employed to replace the average filter which is used in the traditional neural network method for its strong ability of edge preservation and global optimization. A variable learning rate is designed in the recursive parameter update process to eliminate the ghosting artifacts more effectively. The performance of the proposed method is tested with two infrared image sequences, which are contaminated with high spatial frequency and low spatial frequency nonuniformity, respectively. Compared with other well-established nonuniformity correction methods, our method has the strength in significantly increasing the convergence speed and meanwhile reducing the ghosting artifacts.
出处 《红外技术》 CSCD 北大核心 2015年第4期265-271,共7页 Infrared Technology
基金 国家863计划资助项目 编号:2013AA122301 国家自然科学基金项目 编号:61001187 湖北省自然科学基金面上项目 编号:2014CFB461 华中师范大学中央高校基本科研业务费项目 编号:CCNU14A05017
关键词 非均匀性校正 神经网络 非局部均值滤波 收敛速度 鬼影 nonuniformity correction neural network non-local means filter convergence speed ghosting artifacts
  • 相关文献

参考文献13

  • 1张爽,周慧鑫,牛肖雪,秦翰林,钱琨.基于非局部均值滤波与时域高通滤波的非均匀性校正算法[J].光子学报,2014,43(1):147-150. 被引量:14
  • 2刘永进,朱红,赵亦工.基于粒子滤波的红外焦平面阵列非均匀校正算法[J].红外与激光工程,2008,37(6):945-950. 被引量:5
  • 3Scribner D A, Sarkady K A, Kruer M R, et al. Adaptive nonuniformity correction for IR focal plane arrays using neural networks[C]//SPIE, 1991 100-109. 被引量:1
  • 4Harris J G, Chiang Y M. Nonuniformity correction of infrared image sequences using the constant-statistics constraint[J]. IEEE Transactions onlmageProcessing, 1999, 8(8): 1148-1151. 被引量:1
  • 5Zuo C, Chen Q, Gu G, et al. Scene-based nonuniformity correction algorithm based on imerframe registration[J]. Journal of the Optical Society of America. A, Optics, image science, and vision, 2011, 28(6): 1164-1176. 被引量:1
  • 6Zuo C, Chen Q, Gu G, et al. Improved interframe registration based nonuniformity correction for focal plane arrays[J]. Infrared Physics & Technology, 2012, 55(4): 263-269. 被引量:1
  • 7张学峰,陈宝国,樊养余,王巍.基于场景的红外非均匀性校正算法对比研究[J].红外技术,2013,35(9):560-566. 被引量:9
  • 8Buades A, Coil B, Morel J M. A non-local algorithm for image denoising[C]//IEEE, 2005: 60-65. 被引量:1
  • 9Darbon J, Cunha A, Chan T F, et al. Fast nonlocal filtering applied to electron cryomicroscopy[C]//IEEE, 2008: 1331-1334. 被引量:1
  • 10Vera E, Torres S. Fast adaptive nonuniformity correction for infrared focal-plane array detectors[J]. EURASIP 3ournal on Applied Signal Processing, 2005, 13: 1994-2004. 被引量:1

二级参考文献19

共引文献23

同被引文献52

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部