期刊文献+

挖掘电信告警关联模式方法 被引量:6

An Approach on Association Patterns Mining in Telecommunication Alarm Database
原文传递
导出
摘要 关联模式挖掘算法通常受到最小支持度的限制,仅能得到频繁告警序列间的关联模式,针对这一问题,基于图论思想提出了一种挖掘电信网络告警间关联模式的方法.首先在单遍扫描数据库的条件下挖掘网络中的二项关联模式,然后直接发现其最大关联模式,从而避免大量中间项集的产生.基于实际网络告警数据的实验结果表明,该方法不仅具有较高的效率,而且有效. Currently limiting to the minimal support, the algorithms used in alarm association rules mining are almost applied in the frequently occurring alarm events. A new algorithm based on graph theory to mine telecommunication alarm pattern is proposed. It first mines network's 2-items association pattern by scanning the database only once, and then gets the maximal association mode, so that it can avoid generating lots of middle items. Experiments based on the actual network alarm data demonstrate the efficiency and the effectiveness of the algorithm.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2011年第2期85-89,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(60905017) 高等学校学科创新引智计划项目(B08004) 中央高校基本科研业务费专项资金资助项目(2011RC0119)
关键词 故障管理 告警关联 数据挖掘 fault management alarm association data mining
  • 相关文献

参考文献7

二级参考文献15

  • 1陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法[J].软件学报,2004,15(8):1198-1207. 被引量:30
  • 2徐前方,肖波,郭军.一种基于相关度统计的告警关联规则挖掘算法[J].北京邮电大学学报,2007,30(1):66-70. 被引量:15
  • 3Agrawal R.Mining association rules between sets of items in large databases[C]∥Proceedings of the 1993 ACM SIGMOD Conference.Washington,D C:[s.n.],1993:207-216. 被引量:1
  • 4Hatonen K.Knowledge discovery from telecommunication network alarm databases[C]∥ICDE'96.New Orleans:[s.n.],1996:115-122. 被引量:1
  • 5Han Jiawei.Mining frequent patterns without candidate generation[C]∥Proceedings of the 2000 ACM SIGMOD.Dallas:[s.n.],2000:1-12. 被引量:1
  • 6Vilalta Ricardo,Ma Sheng,Hellerstein Joseph.Rule induction of computer events[C]∥Proceedings of the 12th IFIP/IEEE DSOM'2001.Nancy France:[s.n.],2001:225-235. 被引量:1
  • 7Antunes C,Oliveira A L.Inference of sequential association rules guided by context free grammars[C]∥ Proc Int'Conf on Grammatical Inference.Amsterdam:[s.n.],2002:1-13. 被引量:1
  • 8Gardner R D and Harle D A.Methods and systems for alarm correlation.Global Telecommunications Conference,1996.GLOBECOM '96.'Communications:The Key to Global Prosperity,London,UK,18-22 Nov.,1996,vol.1:136-140. 被引量:1
  • 9Bouloutas A T,Calo S,and Finkel A.Alarm correlation and fault identification in communication networks.IEEE Trans.on Communications,1994,42(2/3/4):523-533. 被引量:1
  • 10Ekaette E U and Far B H.A framework for distributed fault management using intelligent software agents.IEEE CCECE 2003,Canadian Conference on Electrical and Computer Engineering,Canada,4-7 May,2003,vol.2:797-800. 被引量:1

共引文献51

同被引文献33

  • 1马琳茹,杨林,王建新,唐鑫.利用模糊聚类实现入侵检测告警关联图的重构[J].通信学报,2006,27(9):47-52. 被引量:4
  • 2Martin A, Leon C, Luque J, et al. A framework for development of integrated intelligent knowledge for management of telecommunication networks. Expert Systems with Applications, 2012(39):9264-9274. 被引量:1
  • 3Li T Y, Li X M. Preproeessing expert system for mining association rules in tel networks. Expert Systems with Applications, 2011(38): 1709-1715. 被引量:1
  • 4Amaral A A, Zarpelo B B, Mendes L S, et al. Inference of network anomaly propagation using spatio-temporal correlation. Journal of Network and Computer Applications, 2012 (35): 1781- 1792. 被引量:1
  • 5Sterritt R, Bustard D, McCrea A. Autonomic computing correlation for fault management system evolution. Proceedings of IEEE International Conference on Industrial lnformaties, INDIN 2003, Berlin, Germany, 2003:233-247. 被引量:1
  • 6Agrawal R, Srikant R. Fast algorithms for mining association rules. VLDB'1994, Santiago de Chile, 1994:487-499. 被引量:1
  • 7Mannila H, Toivonen H, Verkamo A I. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1997, 1(3): 259-289. 被引量:1
  • 8Pei Jian, Han Jiawei, Mortazavi-asl B, et al. PrefixS- pan: mining sequential patterns efficiently by prefix-pro- jected pattern growth [ C ] //IEEE International Confer- ence on Data Engineering. Heidelberg: IEEE Press, 2001 : 215-224. 被引量:1
  • 9Mohammed J Zaki. SPADE: an efficient algorithm for mining frequent sequences [ J ]. Machine Learning, 2001, 42(1/2) : 31-60. 被引量:1
  • 10Yan Xifeng, Han Jiawei, Ramin Afshar. CloSpan: min- ing closed sequential patterns in large databases [ C ] // ACM SIAM International Conference on Data Mining. San Francisco: ACM Press, 2003: 166-177. 被引量:1

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部