期刊文献+

基于RBF神经网络的热电偶信号处理新方法 被引量:3

New signal processing method for thermocouple based on RBF neural network
下载PDF
导出
摘要 针对热电偶信号处理中的非线性校正和冷端补偿等突出问题,利用径向基函数(RBF)神经网络构造双输入单输出的网络模型,并采用遗传算法对网络结构和参数进行优化训练,同时完成了热电偶测温中的非线性校正和冷端补偿。经仿真实验证明:该方法的测量误差减小至0.095%,在较大范围内提高了热电偶温度测量的精度。 A method is presented to compensate non-linearity and cold-side-offset for signal processing of thermocouple. A network model with two inputs and single output is constructed by radial basis function (RBF) neural network (NN) ,which is trained by genetic algorithm. Under the NN model, non-linearity compensation and cold-side-offset adjustment of thermocouple are realized simultaneously. The simulation experimenls show that the testing error of this method is 0. 095 % ,it improves the accuracy in a wider range.
出处 《传感器与微系统》 CSCD 北大核心 2007年第1期36-38,共3页 Transducer and Microsystem Technologies
关键词 热电偶 径向基函数神经网络 遗传算法 非线性校正 冷端补偿 thermocouple radial basis function (RBF) neural network (NN) genetic algorithm non-linearity adjustment cold-side-offset
  • 相关文献

参考文献9

二级参考文献25

  • 1蔡煜东,姚林声.传感器非线性校正的人工神经网络方法[J].仪器仪表学报,1994,15(3):299-302. 被引量:21
  • 2徐群,袁越,粱德润.热电偶冷端自动补偿及非线性校正算法分析[J].仪表技术与传感器,1996(9):39-41. 被引量:2
  • 3李扬,朱培玉,王延儒.溴化四乙铵催化合成碳酸乙烯酯反应研究[J].南京师范大学学报(工程技术版),2007,7(1):59-62. 被引量:9
  • 4[1]Mulgrew Bernard. Applying radial basis functions[J]. IEEE Signal Processing Magazine, 1996, 13(2): 50-65. 被引量:1
  • 5[2]De Castro L N, Von Zuben F J. An immunological approach to initialize centers of radial basis function neural networks[C]. Proceedings of V Brazilian Conference on Neural Networks, 2001. 79-84. 被引量:1
  • 6[3]Maniezzo V. Genetic evolution of the topology and weight distribution of neural networks[J]. IEEE Trans on Neural Networks, 1994, 5(1): 39-53. 被引量:1
  • 7[4]Moody J., Darken C. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, (1): 281-294. 被引量:1
  • 8[5]Karayiannis N B, Mi G W. Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques[J]. IEEE Trans on Neural Networks, 1997, 8(6): 1492-1506. 被引量:1
  • 9[6]Sergio Verdu. Multiuser Detection [M]. Cambridge, UK: Cambridge University Press, 1998. 被引量:1
  • 10Anwar A,Kan A New Range Li ileal ization Approath for Thermistor Thermometer.IEEE Transaction on Instrumentation and Measurement 1987.36(3):763-769. 被引量:1

共引文献119

同被引文献45

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部