期刊文献+

基于BP神经网络的异常入侵检测方法 被引量:2

An Approach of Anomaly Intrusion Detection Using BP Neural Network
下载PDF
导出
摘要 提出一种基于BP神经网络的异常入侵检测方法,由于BP神经网络是一种基于误差反向传播算法的多层前馈神经网络,具有对不确定性的学习与适应能力,可以很好的满足入侵检测分类识别的需求.对“KDD Cup 1999 Data”网络连接数据集进行特征选择和标准化处理之后用于训练神经网络并仿真实验,得到了较高的检测率和较低的误报率.仿真实验表明,基于BP神经网络的入侵检测方法是有效的. An anomaly intrusion detection approach using BPN is proposed in this paper. BPN is a multilayer Feedforward Neural Network based on Error Back-propagation algorithm. Being able to adapt itself to and fault-tolerant to imprecise data and uncertain information it seems to be an appropriate approach to intrusion detection. Simulated experiments with KDD Cup 1999 network traffic connections which have been preprocessed with methods of features selection and normalization have shown that BPN model is effective for intrusion detection owing to excellent performance of the higher attack detection rate with lower false positive rate.
作者 杨种学 杨宁
出处 《南京晓庄学院学报》 2006年第6期82-86,共5页 Journal of Nanjing Xiaozhuang University
关键词 入侵检测 异常检测 神经网络 BP算法 intrusion detection anomaly detection neural network BP algorithm
  • 相关文献

参考文献10

  • 1Teuvo.Self-O rgan izingM aps[].Springer Series in Infor-m ation Sc iences.2001 被引量:1
  • 2Srilatha C,A jith A.,P.Thom as.Feature deduction andensemb le design of intrusion detection system[].Com-puter&Security.2004 被引量:1
  • 3Rum elhart,,M cC lelland,Parallel.D istributed Processing:Exp lorations in the M icrostructure of Cogn ition[]..1986 被引量:1
  • 4Helm an,P,Bhangoo,J.A statistically base system for pri-oritizing inform ation exp loration under uncertainty[].IEEE Transactions on System sM an and CyberneticsPartA:System s and Hum ans.1997 被引量:1
  • 5Frank,J.Artific ial Intelligence and Intrusion Detection:Current and future d irections[].Proceed ings of the thNational Computer Security Conference.1994 被引量:1
  • 6Crosbie,M,Spafford,E.Defend ing a computer system usingautonomous agents[].Proceed ings of the th NationalInformation Systems Security Conference.1995 被引量:1
  • 7.KDD Cup 1999 Data[OL][]..1999 被引量:1
  • 8Gybenko.G.Approxim ation by Superpositions of a S ig-moidal Function[].M athControlS ignalsSyst.1989 被引量:1
  • 9StefanosM,M arvin C,Dan Z,Ke ith H.A data m in ing a-nalysis of RTID alarm s[].Computer Networks.2000 被引量:1
  • 10Mukkam ala S,,Janosk iG,Sung A.Intrusion detection usingsupport vectorm ach ine[].Proceed ings ofH igh Perform-ance Computing Symposium-HPC.2002 被引量:1

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部