期刊文献+

基于近似约简的集成学习算法及其在入侵检测中的应用 被引量:1

Approximate Reducts-based Ensemble Learning Algorithm and Its Application in Intrusion Detection
下载PDF
导出
摘要 为了获得较大差异性的基学习器来构建集成学习器,从属性空间划分的角度来考虑集成学习问题,通过粗糙集理论定义了近似约简的概念,进一步提出了基于近似约简的集成学习算法;本方法将数据集的属性空间划分为多个子空间,基于不同子空间对应的数据集训练得到的基学习器具有较大的差异性,从而保证了集成学习器具有较强的泛化性能.为了验证本算法的有效性,本算法被应用于网络入侵检测中.在KDD CUP 99数据集上的实验表明,与传统的集成学习算法相比,本文所提出的算法具有更高的检测率和更低的计算开销,更适合于从海量高维的网络数据中检测入侵. To obtain diverse base learners for construct ensemble learner, the issue of ensemble learningwas considered from the perspective of partitioning the attribute space. Through rough set theory, theconcept of approximate reduct was defined, and further an approximate reducts-based ensemble learningalgorithm was proposed. The method could partition the attribute space of data set into multiplesubspaces, and the base learners trained on data sets corresponding to different subspaces had largediversity, which guarantee that the ensemble learner has strong generalization performance. To verify theeffectiveness of the algorithm, it was applied to network intrusion detection. Experimental results on theKDD CUP 99 data set demonstrate that compared with the traditional ensemble learning algorithms, theproposed method has higher detection rate and lower computational cost, which is more suitable for thedetection of intrusions from the massive and high- dimensional network data.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2016年第6期877-885,共9页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61303193) 山东省自然科学基金资助项目(ZR2014FM015) 山东省高等学校科技计划资助项目(J11LG05)
关键词 近似约简 集成学习 入侵检测 approximate reducts ensemble learning intrusion detection
  • 相关文献

参考文献25

二级参考文献96

共引文献398

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部