期刊文献+

基于混合神经网络的入侵检测技术 被引量:7

Intrusive Detection Technology Based on Mixed Neural Networks
下载PDF
导出
摘要 本文将自组织映射神经网络与学习矢量量化的学习算法混合,用于基于程序行为的本机入侵异常检测中。考虑到目前很多方法存在成功率低以及训练时间长的缺点,本文利用自组织映射神经网络对数据聚类,然后通过学习矢量量化对已聚类的数据再进行分类。仿真实践证明,这种混合优化技术可使分类的边界得以收缩,可提高分类精度和准度,提高了入侵检验的成功率。 This paper proposes an advanced method which was mixed by self-organizing map neural network and learning vector quantization algorithm,and used in intrusive detection system based on program behavior of local machine. For improving its low success possibility and long training time,this paper makes use of self-organizing map neural network to cluster data and then classifies these data by learning vector quantization.Using a simulation example,the mixed method not only cleared the edge of classification, advanced precision and accuracy of classification,but also improved its success possibility of intrusive detection.
作者 牛永洁 陈莉
出处 《微计算机信息》 北大核心 2006年第12X期92-94,147,共4页 Control & Automation
基金 陕西省自然科学基金98X11 陕西省教育厅重点科研计划项目00JK015资助
关键词 SOM LVQ 异常检测 聚类 分类 SOM,LVQ,intrusive detection,clustering,classification
  • 相关文献

参考文献6

二级参考文献3

  • 1Lunt T. A survey of intrusion detection techniques.Computers and Security, 1993, 12. 405-418. 被引量:1
  • 2Jain A, Mao J, Mohiuddin K M. Artificial neural networks: a tutorial. IEEE Computer, 1996, 29(3):31 -33. 被引量:1
  • 3Lane T, Brodley C. An application of machine learning to anomaly detection, in: Stephen B ed. The 20th National Information Systems Security Conference. Baltimore, 1997. Baltimore: Boulder. CO, 1997. 366-377. 被引量:1

共引文献35

同被引文献50

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部