期刊文献+

一种用于文章推荐系统中的用户模型表示方法 被引量:4

A Novel Representation of User Profile in Document Recommendation System
下载PDF
导出
摘要 分析了现有文章推荐系统中基于关键词向量的用户模型表示方法存在的不足,提出了基于聚类兴趣点的用户模型表示方法。该方法可通过文章聚类形成兴趣点。由于传统的基于划分的聚类算法存在的不足,提出了基于复杂网络特征的文章聚类算法。实验结果表明该用户模型的表示方法较好地反映了用户多方面的兴趣,提高了文章推荐系统的性能。 After analyzing the disadvantages of the user profile based on-keywords vector in the existing document recommendation system, a novel representation of user profile based on clustering was proposed. The representation firstly clustered the documents into clusters. Because of the disadvantage of the traditional partitioned clustering algorithm, a novel document clustering algorithm based on complex networks featttre was presented. Experimental results show the representation of user profile proposed can represent user multi - interests better and improves the perforrnance of document recommendation system greatly.
出处 《计算机技术与发展》 2007年第1期4-5,48,共3页 Computer Technology and Development
基金 安徽省自然科学基金项目(2004kj011) 安徽省高校青年教师基金项目(2006jq1040)
关键词 聚类 复杂网络 推荐系统 用户模型 clustering complex networks recommendation system user profile
  • 相关文献

参考文献5

二级参考文献47

  • 1Stefani A, Strappavara C. Personalizing access to Web sites: The SiteIF project [EB/OL]. http: //wwwis. win. rue. nl/ah98/Stefani/Stefani. html, 1998-06-24/2004-03-12. 被引量:1
  • 2Sorensen H, Mc Elligott M. PSUN: A profiling system for usenet news EA]. CIKM'95 Intelligent Information Agents Workshop [C]. Baltimore : ACM Press, 1995. 205 -211. 被引量:1
  • 3Sowa J F. Knowledge representation: Logical,philosophical, and computational foundations [M ].Brooks/Cole: Division of Thomson Learning Inc,2000.51-54. 被引量:1
  • 4Pratt K B, Tschapek G. Visualizing concept drift [A]. Proceedings of ACM Conference on Knowledge Discovery and Data Ming[C]. Washington, DC:ACMPress, 2003. 735-740. 被引量:1
  • 5Maloof M. Incremental rule learning with partial instance memory for changing concepts [ A ].Proceedings of the International Joint Conference on Neural Networks (IJCNN '03)[C]. Los Alamitos,CA: IEEE Press,2003.2764 2769. 被引量:1
  • 6Koychev I, Schwab I. Adaptation to drifting user's intersects [ A ]. Proceedings ECML2000/MLnet workshop"ML in the New Information Age" [C].Barcelona, Spain: IEEE Press,2000. 39-45. 被引量:1
  • 7Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415. 被引量:1
  • 8Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247. 被引量:1
  • 9Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999. 被引量:1
  • 10Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381. 被引量:1

共引文献433

同被引文献29

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部