期刊文献+

基于时间权重和用户兴趣变化的协同过滤算法 被引量:4

A Collaborative Filtering Algorithm Based on User Interest Change and Time Weight
下载PDF
导出
摘要 由于传统推荐算法未考虑项目类型和时间对用户兴趣变化的影响。为此,提出一种基于时间权重和用户兴趣变化的协同过滤算法TACF(time and interests collaborative filtering)。首先,构建用户兴趣分布矩阵,计算用户间的兴趣相似度;其次,引入时间权重函数,计算用户评分相似度;最后,组合两种相似度方法,采用改进的预测评分公式进行计算,提供更加准确的个性化推荐。实验表明,TACF算法不仅能较好地反映用户兴趣的变化,还能提高推荐精确度。 The traditional recommendation algorithm does not consider the impact of project type and time changes on user interest.To solve this problem,this paper proposed a collaborative filtering algorithm called ATCF,which based on user interest change and time weight.First,construct the user interesting distribution matrix and calculate the interest similarity between users.Second,the time weight function introduced to calculate the user score similarity.Final,combined the two similarity methods and the improved predictive scoring formula used for scoring prediction to provide more accurate personalized recommendations.Experiments show that the ATCF algorithm can not only reflect the changes of user interest,but also improve the accuracy of recommendation.
作者 王娜娜 WANG Nana(School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China)
出处 《皖西学院学报》 2020年第2期40-45,共6页 Journal of West Anhui University
基金 安徽省教育厅自然科学基金重点项目(KJ2015A111) 2018安徽高校拔尖人才培育项目(gxbjZD15)。
关键词 推荐系统 协同过滤 时间权重 用户兴趣变化 recommendation system collaborative filtering user interest change time weight
  • 相关文献

参考文献11

二级参考文献80

  • 1刘玮.电子商务系统中的信息推荐方法研究[J].情报科学,2006,24(2):300-303. 被引量:31
  • 2赵鹏,蔡庆生,王清毅.一种用于文章推荐系统中的用户模型表示方法[J].计算机技术与发展,2007,17(1):4-5. 被引量:4
  • 3刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:58
  • 4Eleftherios T, Yannis M. Product recommendation and rating prediction based on multi-modal social networks[C]//Pocee- dings of the 5th ACM Conference on Recommender Systems. New York: ACM Press, 2011 : 61-68. 被引量:1
  • 5Cheng Yuan, Qiu Guang, Bu Jia-jun, et al. Model bloggers' in- terests based on forgetting mechanlsm[C]//Proceedings of the 17th International Conference on World Wide Web. New York: ACM Press,2008:1129- 1130. 被引量:1
  • 6Zhou Tao,Jiang L L,Su R Q,et al. Effect of initial configuration on network-based recommendation[J]. Europhys Lett, 2008,81: 58004. 被引量:1
  • 7JIANG S, HONG W X. A vertical news recommendation system: CCNS——an example from Chinese campus news reading system[C]//ICCSE 2014: Proceedings of the 2014 9th International Conference on Computer Science & Education. Piscataway, NJ: IEEE, 2014: 1105-1114. 被引量:1
  • 8DAS A S, DATAR M, GARG A, et al. Google news personalization: scalable online collaborative filtering[C]//WWW '07: Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 271-280. 被引量:1
  • 9GARCIN F, ZHOU K, FALTINGS B, et al. Personalized news recommendation based on collaborative filtering[C]//WI-IAT '12: Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology. Washington, DC: IEEE Computer Society, 2012, 1: 437-441. 被引量:1
  • 10WU X D, XIE F, WU G Q, et al. Personalized news filtering and summarization on the Web[C]//ICTAI 2011: Proceedings of the 2011 23rd IEEE International Conference on Tools with Artificial Intelligence. Washington, DC: IEEE Computer Society, 2011: 414-421. 被引量:1

共引文献169

同被引文献42

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部