期刊文献+

一种无线传感器网络中的信息驱动节点选择机制 被引量:4

An Information-Driven Sensor Selection Algorithm for Target Estimation in Sensor Networks
下载PDF
导出
摘要 提出了一种信息驱动的节点选择机制,应用于无线传感器网络中的目标估值.其以传感器节点的测量值与目标状态的估计分布之间的互信息作为信息效用函数,度量节点的测量值对目标状态估计的信息贡献,选择信息贡献值大的节点参与卡尔曼滤波过程进行迭代;应用基于地理位置信息的路由算法顺序访问选中的节点,并建立与Sink节点之间的路由,路径上的节点依次进行卡尔曼迭代以修正估计的状态值.仿真结果表明,该机制涉及的节点数目较少,总的通信距离较短,但目标估值的性能很好. An information-driven sensor selection algorithm is proposed to select sensors to participate in Kalman filtering for target state estimation in sensor networks. The mutual information between the measurements of sensors and the estimated distribution of the target state is considered as the information utility function to evaluate the information contributions of sensors. Only those sensors with larger mutual information are selected to participate in Kalman filtering iterations. Then the geographic routing mechanism is utilized to visit these selected sensors sequentially and to set up a path to transport the state estimation information to the sink node. Simulation results show that the information-driven sensor selection algorithm has excellent estimation performance.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2006年第6期62-66,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(20502036)
关键词 传感器网络 信息驱动的节点选择机制 卡尔曼滤波 信息效用函数 sensor networks information-driven sensor selection Kalman filtering information utility function
  • 相关文献

参考文献14

  • 1[1]Shah R C,Rabaey J M.Energy aware routing for low energy Ad hoc sensor networks[C] // Proc IEEE Wireless Communication and Network Conference.Orlando:[s.n.],2001:350-355. 被引量:1
  • 2[2]Karp B,Kung H T.Greedy perimeter stateless routing for wireless networks[C]//Proc MobiCom 2000.Boston:[s.n.],2000:243-254. 被引量:1
  • 3[3]Ko Y-B,Vaidya N H.Geocasting in mobile Ad hoc networks:location-based multicast algorithms[C] //Proc IEEE Workshop Mobile Comput Syst Appl.New Orleans:[s.n.],1999:101-110. 被引量:1
  • 4[4]Intanagonwiwat C,Govindan R,Estrin D.Directed diffusion:a scalable and robust communication paradigm for sensor networks[C]//Proc MobiCom 2000.Boston:[s.n.],2000:56-67. 被引量:1
  • 5[5]Manyika J,Durrant-Whyte H.Data fusion and sensor management:a decentralized information-theoretic approach[M].New York:Ellis Horwood,1994. 被引量:1
  • 6[6]Byers J,Nasser G.Utility-based decision-making in wireless sensor networks[C] //Proc IEEE MobiHOC 2000.Boston:[s.n.],2000:143-144. 被引量:1
  • 7[7]Zhao Feng,Shin J,Reich,J.Information-driven dynamic sensor collaboration[J].Signal Processing Magazine,2002,19(2):61-72. 被引量:1
  • 8[8]Chen Weipeng,Hou J C,Lui Sha.Dynamic clustering for acoustic target tracking in wireless sensor networks[J].IEEE Transactions on Mobile Computing,2004,3(3):258-271. 被引量:1
  • 9[9]Liu Juan,Reich J E,Zhao Feng.Collaborative in-network processing for target tracking[J].EURASIP Journal on Applied Signal Processing,2003(4):378-391. 被引量:1
  • 10[10]Spanos D P,Olfati-Saber R,Murray R M.Approximate distributed Kalman filtering in sensor networks with quantifiable performance[C]//Fourth International Symposium on Information Processing in Sensor Networks,IPSN2005.California:[s.n.],2005:133-139. 被引量:1

同被引文献13

引证文献4

二级引证文献235

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部