摘要
支持向量机(SVM)适合处理小样本的问题,并且基于核函数主元分析能够处理原始数据的高阶统计量,在图像识别中它可以描述多个像素之间的相关性,因此提出了一种基于核函数主元分析(KPCA)与支持向量机(SVM)的人脸识别方法。
The support vector machine (SVM) suits for tackling small sample size problems, and the kernel principal component analysis (KPCA) based on the higher order statistics of the image sets can address the higher statistical dependencies, which describes the relationship among three or more pixels. This paper proposes a face recognition method based on FLPCA and SVM.
出处
《山西电子技术》
2006年第5期44-46,共3页
Shanxi Electronic Technology
关键词
支持向量机
核函数主元分析
人脸识别
support vector machine
kernel component analysis
face recognition