期刊文献+

基于稀化核函数主元分析的机械故障诊断方法研究

MACHINE FAULT DIAGNOSIS METHOD BASED ON SPARSE KERNEL PRINCIPLE COMPONENT ANALYSIS
下载PDF
导出
摘要 提出一种基于稀化核函数主元分析的机械故障诊断新方法。该方法通过核函数映射将非线性问题转换成高维的线性特征空间,引入可变权值对高维空间中的映射数据的协方差矩阵进行稀化,应用似然估计得到优化权值,再作主元分析,提取其非线性特征,对机械故障模式进行识别。提出的方法继承核函数主元分析的优良性质,同时又能保证在识别效率不降低下的情况下有效提高故障识别速度。仿真和实验结果表明,稀化核函数主元分析和核函数主元分析方法都能得到很好的识别效果。然而,稀化核函数主元分析由于减少了核矩阵的计算量,因而模式识别速度大大加快。 A new fault diagnosis method of machine based on the sparse kernel principle component analysis (5KPCA) is proposed. The proposed method can transform a nonlinear problem into the higher dimensional linear feature space by kernel function mapping. The covarianee matrix of the mapping data is sparse by the adjustable weights. The weights are optimized using a maximum-likelihood approach. Then the principle component analysis (PCA) method is used to this feature space to extract the nonlinear features. The sparse kernel principle component analysis (SKPCA) reserves the merit of kernel principle component analysis (KPCA), at the same time the speed of pattern recognition is greatly enhanced under the recognized efficiency is not reduced. The simulation shows that SKPCA and KPCA almost have the same recognition effectiveness. However SKPCA reduces the computational overhead of the kernel matrix, so the recognition speed of SKPCA is greatly accelerated.
出处 《机械强度》 CAS CSCD 北大核心 2009年第5期751-754,共4页 Journal of Mechanical Strength
基金 国家自然科学基金(50775208) 河南省教育厅自然科学基金(2006460005 2008C460003)资助项目~~
关键词 稀化核函数主元分析 故障诊断 模式识别 Sparse kernel principle component analysis (SKPCA) Fault diagnosis Pattern recognition
  • 相关文献

参考文献9

  • 1Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue Problem[J]. Neural Computation, 1998, 10 (5) : 1299-1319. 被引量:1
  • 2李巍华..基于核方法的机械故障特征提取与分类技术研究[D].华中科技大学,2003:
  • 3张曦,阎威武,赵旭,邵惠鹤.Nonlinear online process monitoring and fault diagnosis of condenser based on kernel PCA plus FDA[J].Journal of Southeast University(English Edition),2007,23(1):51-56. 被引量:5
  • 4廖广兰,史铁林,来五星,姜南,刘世元.基于核函数PCA的齿轮箱状态监测研究[J].机械强度,2005,27(1):1-5. 被引量:6
  • 5王华.基于核函数PCA的柔性薄板装配偏差源诊断[J].机械强度,2007,29(3):433-436. 被引量:4
  • 6Tipping M E. Sparse Bayesian learning and the relevance vector machine [J].Journal of Machine Learning Research, 2001, 1: 211-244. 被引量:1
  • 7Tipping M E. Sparse kernel principal component analysis[C]//Todd K Leen, Thomas G Dietterich, Volker Tresp. Advances in Neural Information Processing Systems 13. USA: MIT( Massachusetts Institute of Technology), 2001: 633-639[2007-10-18]. http: //research. microsoft.com/ users/mtipping/pages/publications.htm. 被引量:1
  • 8Tipping M E, Bishop C M. Probabilitic principle component analysis[J]. Journal of Royal Statistical Society: Series B, 1999, 61 (3): 611 -699. 被引量:1
  • 9Tipping M E. The relevance vector machine [ C ]//Solla SA, Leen T K, Muller K R. Advances in Neural Information Processing Systems 12. USA: Massachusetts Institute of Technology (MIT), 2000:652-658 [2007-10-19]. http: //research. microsoft.com/users/mtipping/pages/ publications. htm. 被引量:1

二级参考文献20

  • 1Lai Wuxing Zhang Guicai Shi Tielin Yang ShuziSchool of Mechanical Science and Engineering, Huazhong University of Science and Technology,Wuhan 430074, China.CLASSIFICATION OF GEAR FAULTS USING HIGHER-ORDER STATISTICS AND SUPPORT VECTOR MACHINES[J].Chinese Journal of Mechanical Engineering,2002,15(3):243-247. 被引量:6
  • 2廖广兰,史铁林,来五星,姜南,刘世元.基于核函数PCA的齿轮箱状态监测研究[J].机械强度,2005,27(1):1-5. 被引量:6
  • 3吴今培.基于核函数的主成分分析及应用[J].系统工程,2005,23(2):117-120. 被引量:28
  • 4Takezawa N.An improved method for establishing the process-wise quality standard.Reprots of statistical application research.Union of Japanese Scientists and Engineers(JUSE),1980,27(3):63~76. 被引量:1
  • 5Shalon Dari,Gossard David,Ulrich Karl,et al.Representing geometric variations in complex structural assemblies on CAD systems.ASME Design Engineering Division (Publication),1992,44(2):121~132. 被引量:1
  • 6Hu S J.Stream of variation theory for automotive body assembly.Annals of the CIRP,1997,46(1):1~6. 被引量:1
  • 7Liu S C,Hu S J.An offset finite element model and its applications in predicting sheet metal assembly ariation.International Journal of Machine Tools and Manufacturing,1995,35(11):1 545~1 557. 被引量:1
  • 8Liu S C,Hu S J.Variation simulation for deformable sheet metal assemblies using finite element methods.Journal of Manufacturing Science and Engineering,1997,119:368~374. 被引量:1
  • 9Liu S C,Hu S J,Woo T C.Tolerance analysis for sheet metal assemblies.ASME Journal of Mechanical Design,1996,118(3):62~66. 被引量:1
  • 10Mantripragada Ramakrishna,Whitney Daniel E.Modeling and controlling variation propagation in mechanical assemblies using state transition models.IEEE Transactions on Robotics and Automation,1999,15(1):124-140 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部