期刊文献+

稀疏多级正则化结合SN的鲁棒人脸识别算法

A Robust Face Recognition Algorithm Based on Fusion of Sparse Multi-level Regularization and SN
下载PDF
导出
摘要 针对人脸姿态、光照、人脸表情和周围环境发生变化时人脸识别精度不高的问题,提出一种基于稀疏多级正则化剪切波网络的鲁棒人脸识别算法。该算法创新点有二:第一,采用剪切波网络(SN)多尺度方向框架去提取人脸特征,其优势在于剪切波框架具有高度稀疏表示,有利于的提取图像中鲁棒的几何内容;第二,采用了一种完善的多任务稀疏学习,利用识别阶段中正则化参数改变多个共享任务间的关系。实验结果表明:在可控数据库上,提出算法的识别率达98.5%;在不可控数据库上,比其他算法中的最好结果高5%左右。 As the recognition accuracy is not high when the face pose, illumination, facial expression orsurrounding environment changes. A new robust face recognition algorithm based on sparse multi-levelregularization shear-wave networks (SMRSN) is proposed. The main innovation is twofold: Firstly,shear-wave networks (SN) multi-scale framework is used to extract facial features. And the advantages of SNis that this framework can be highly sparse represented, which is very beneficial for extracting robustgeometric contents; Secondly, a complete multitasking sparse learning method is used, which can change therelationship between share tasks by the regularization paras. Experimental results show that the recognitionrate of the proposed algorithm can reach 98.5 percent in the controlled database; and in the uncontrolleddatabase, the result is higher than that of other algorithms by 5 percent.
出处 《控制工程》 CSCD 北大核心 2017年第1期106-111,共6页 Control Engineering of China
基金 江苏省高校自然科学研究项目(14KJB520036)
关键词 人脸识别 剪切波网络 稀疏表示 多任务稀疏学习 鲁棒性 不可控数据库 Face recognition shear-wave network sparse representation multitask sparse learning robustness uncontrolled database
  • 相关文献

参考文献6

二级参考文献55

  • 1李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:107
  • 2赵丽红,孙宇舸,蔡玉,徐心和.基于核主成分分析的人脸识别[J].东北大学学报(自然科学版),2006,27(8):847-850. 被引量:17
  • 3何国辉,甘俊英.PCA-LDA算法在性别鉴别中的应用[J].计算机工程,2006,32(19):208-210. 被引量:19
  • 4李莉莉,李一民,蔡英.KPCA和SVM在人脸识别中的应用[J].山西电子技术,2006(5):44-46. 被引量:2
  • 5孙涛,谷士文,费耀平.基于PCA算法的人脸识别方法研究比较[J].现代电子技术,2007,30(1):112-114. 被引量:14
  • 6Shen Linlin, Bai Li, Ji Zhen. Data Driven Gabor Wavelet Design for Face Recognition[C]. The 2008 Chinese Conference on Pattern Recognition, Bei- jing, 2008. 被引量:1
  • 7Prince S J D, Elder J H, Warrell J, et al. Tied Fac- tor Analysis for Face Recognition Across Large Pose Differences[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 (6) :970-984. 被引量:1
  • 8Blanz V, Romdhani S, Vetter T. Face Identification Across Different Poses and Illumination with a 3D Morphable Model[C]. The 5th IEEE International Conference on Automatic Face and Gesture Recogni- tion, Washingtion D C, 2002. 被引量:1
  • 9Liu Y L,Yu L. The applications of wavelet transform and fast PCA and SVM in human face identification [ C ]. Proceedings of IEEE International Conference on Computing and Networking Technolo- gy. IEEE Press,2012 : 175-179. 被引量:1
  • 10Zafeiriou S, Tzimiropoulos G, Petrou M, et al. Regularized kernel discriminant analysis with a robust kernel for face recognition and verification[ J ]. Neural Networks and Learning Systems, 2012,23 (3) :526 -534. 被引量:1

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部