期刊文献+

SOFM神经网络在处理非空间属性中的应用 被引量:2

Application of SOFM neural network for analyzing non-spatial attributes
下载PDF
导出
摘要 由于非空间属性维数较高,空间聚类算法在处理非空间属性约束时难点首先在于如何为这些非空间属性设定参数,然后是哪些非空间属性在聚类中将起主要作用,并真正影响聚类的结果。对这些问题进行了讨论,并提出使用神经网络中自组织映射的方法来首先选择哪些非空间属性将被优先考虑,使用自组织特征映射(SOFM)方法对非空间属性聚类,最后把非空间属性和空间属性聚类进行合并得到最终的聚类结果的方法。 Because of high dimension characteristic of non-spatial attributes, the difficulties in operation are how to set parameters for these attributes. When using general spatial clustering algorithm, the difficulties are how to judge which dimensions play main role and affect cluster result. Based on the research of those problems, a method for analyzing nonspatial attributes was proposed. First, Self-Organizing Feature Map (SOFM) was adopted to choose some dimensions, and used to cluster the dense non-spatial attributes on these dimensions. Then the cluster of non-spatial attributes and that of spatial attributes were merged.
作者 孙志伟 赵政
出处 《计算机应用》 CSCD 北大核心 2006年第11期2667-2669,2673,共4页 journal of Computer Applications
关键词 聚类算法 高维 神经网络 自组织特征映射 约束 clustering algorithm high-dimension neural network Self-Organizing Feature Map(SOFM) constraint
  • 相关文献

参考文献7

  • 1NG RT, HAN J. Effeicent and Effective Clustering Method for Spatical Data Mining[ A]. Proceedings of the 20th International Conference on Very Large Data Bases[ C]. San Fransisco, Morgan Kaufmann Publishers, 1994. 144 - 155. 被引量:1
  • 2WANG X, HAMILTON HJ. DBRS: A Density-Based Spatial Clustering Method with Random Sampling[ A]. Proceedings of the 7th PAKDD[ C]. Seoul, Korea, 2003. 563-575. 被引量:1
  • 3GUHA S, RASTOGI R, SHIM K. Rock: A robust clustering algorithm for categorical attributes[ A]. Proceedings of the 15th International Conference on Data Engineering [ C]. Sydney, Australia,1999.512 -521. 被引量:1
  • 4孙志伟,赵政.DBSCAN在非空间属性处理上的扩展[J].计算机应用,2005,25(6):1379-1381. 被引量:4
  • 5GANTI V, GEHRKE J, RAMAKRISHNAN R. CACTUS- Clustering Categorical Data Using Summaries[ A]. Proceedings of ACM SIGKDD International Conference on Knowledge Discovery & Data Mining[C]. San Diego, CA USA, 1999. 73-83. 被引量:1
  • 6KOHONEN T. The Self-Organizing Map[ J]. Proceeding of IEEE,1990,78(9). 1464-1480. 被引量:1
  • 7AGRAWAL R, GEHRKE J, GUNOPULOS D, et al. Automactic subspace clustering or high dimensional data for data mining application[ A]. Proceedings of 1998 ACM-SIGMOD International Conference on Management of Data[ C], 1998.94 - 105. 被引量:1

二级参考文献6

  • 1NG RT, HAN J. Effeicent and Effective Clustering Method for Spatic al Data Mining[A]. Proceedings of the 20th Int1 Conf. on Very Large Data Bases[ C]. San Fransisco, Morgan Kaufmann Publishers, 1994. 144 - 155. 被引量:1
  • 2ESER M, KEIEGEL H - P, SANDER J, et al. A Density Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise [A]. Proceedings of KDD'96[ C]. Portland, AAAI Press,1996.226 - 231. 被引量:1
  • 3GANTI V, GEHRKE J, RAMAKRISHNAN R. CACTUS-Clustering Categorical Data Using summaries [ A]. Proceedings of ACM SIGKDD, International Conference on Knowledge Discovery & Data Mining [C]. San Diego, CA USA, 1999. 73-83. 被引量:1
  • 4SANDER J, ESTER M, KRIEGEL H-P, et al. Density - Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications[ J]. Data Mining and KnowledgeDiscovery, 1998, 2(2): 169 - 194. 被引量:1
  • 5WANG X, HAMILTON HJ. DBRS: A Density - Based Spatial Clustering Method with Random Sampling[ A]. Proceedings of the 7th PAKDD[C]. Seoul, Korea, 2003. 563-575. 被引量:1
  • 6GUHA S, RASTOGI R, SHIM K. Rock: A robust clustering algorithm for categorical attributes[ A]. Proceedings of the 15th International Conference on Data Engineering [ C]. Sydney, Australia,1999. 512 - 521. 被引量:1

共引文献3

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部