期刊文献+

DBSCAN在非空间属性处理上的扩展 被引量:4

Extension of DBSCAN with non-Spatial attributes
下载PDF
导出
摘要 在很多有效的聚类算法中,DBSCAN算法对于聚类空间数据有着非常好的性能,依赖于基于密度的聚类定义,DBSCAN可以发现任意形状的聚类,而且执行效率很高。但是,DBSCAN没有考虑非空间属性,而非空间属性对聚类的结果也起着十分重要的作用。在DBSCAN的基础上,参考DBRS的概念,进一步考虑了非空间属性的数据类型,从而提出了可以处理空间和非空间数据的新的聚类方法,并给出了主要的算法。 In many effective algorithms for cluster, DBSCAN algorithm is outstanding for its good performance in spatial data。Relying on a density-based notion of clusters, DBSCAN can discover clusters of arbitrary shape. But it cant support non-spatial attributes, in some application of cluster, the non-spatial attributes play important role. Based on the DBSCAN, referencing some notion of DBRS and considering data type of non-spatial attribute, the paper proposed a method of extension of DBSCAN and gave main algorithm。The algorithm can operate spatial and non-spatial attribute.
作者 孙志伟 赵政
出处 《计算机应用》 CSCD 北大核心 2005年第6期1379-1381,共3页 journal of Computer Applications
关键词 空间数据挖掘 空间聚类 非空间属性 密度 spatial data mining spatial cluster non-Spatial attribute density
  • 相关文献

参考文献6

  • 1NG RT, HAN J. Effeicent and Effective Clustering Method for Spatic al Data Mining[A]. Proceedings of the 20th Int1 Conf. on Very Large Data Bases[ C]. San Fransisco, Morgan Kaufmann Publishers, 1994. 144 - 155. 被引量:1
  • 2ESER M, KEIEGEL H - P, SANDER J, et al. A Density Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise [A]. Proceedings of KDD'96[ C]. Portland, AAAI Press,1996.226 - 231. 被引量:1
  • 3GANTI V, GEHRKE J, RAMAKRISHNAN R. CACTUS-Clustering Categorical Data Using summaries [ A]. Proceedings of ACM SIGKDD, International Conference on Knowledge Discovery & Data Mining [C]. San Diego, CA USA, 1999. 73-83. 被引量:1
  • 4SANDER J, ESTER M, KRIEGEL H-P, et al. Density - Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications[ J]. Data Mining and KnowledgeDiscovery, 1998, 2(2): 169 - 194. 被引量:1
  • 5WANG X, HAMILTON HJ. DBRS: A Density - Based Spatial Clustering Method with Random Sampling[ A]. Proceedings of the 7th PAKDD[C]. Seoul, Korea, 2003. 563-575. 被引量:1
  • 6GUHA S, RASTOGI R, SHIM K. Rock: A robust clustering algorithm for categorical attributes[ A]. Proceedings of the 15th International Conference on Data Engineering [ C]. Sydney, Australia,1999. 512 - 521. 被引量:1

同被引文献38

  • 1王海起,王劲峰.空间数据挖掘技术研究进展[J].地理与地理信息科学,2005,21(4):6-10. 被引量:36
  • 2孙志伟,赵政.SOFM神经网络在处理非空间属性中的应用[J].计算机应用,2006,26(11):2667-2669. 被引量:2
  • 3ZHOU Jiaogen GUAN Jihong LI Pingxiang.DCAD:a Dual Clustering Algorithm for Distributed Spatial Databases[J].Geo-Spatial Information Science,2007,10(2):137-144. 被引量:15
  • 4Lin C R, Liu K H, Chen M S. Dual Clustering: In- tegrating Data Clustering over Optimization and Constraint Domains[J]. IEEE Trans Knowledge and Data Engineering, 2005, 17(5):628-637. 被引量:1
  • 5Han J, Kamber M, Tung A K H. Spatial Cluste- ring Methods in Data Mining.. a Survey//Miller H, Han J,eds. Geographic Data Mining and Knowledge Discovery[M]. London:Taylor and Francis, 2001. 被引量:1
  • 6Halkidi M, Batistakis Y, Vazirgiannis M. On Clus- tering Validation Techniques[J]. Intelligent Infor- mation Systems Journal, 2001, 17(2/3) : 107-145. 被引量:1
  • 7Chawla S, Shekhar S,Wu W, et al. Modeling Spa- tial Dependencies for Mining Geospatial Data: an In- troduction//Miller H, Han J, eds. Geographic Da ta Mining and Knowledge Discovery[M]. London: Taylor and Francis, 2001. 被引量:1
  • 8Wang X, Hamilton H J. DBRS A Density Based Spatial Clustering Method with Random Sampling [C]. The 7th PA-KDD, Seoul, Korea, 2003. 被引量:1
  • 9Sander J, Ester M, Kriegel H P , et al. Density Based Clustering in Spatial Databases the Algo- rithm GDBSCAN and Its Application[J]. Data Mining and Knowledge Discovery, 1998, 2 (2) : 169-194. 被引量:1
  • 10Sheikholeslami G, Chatteriee S, Zhang A. Wave- Cluster: A Multi-Resolution Clustering Approach for very Large Spatial Databases[C]. The 24th In- ternational Conference on very Large Data Bases, New York City, 1998. 被引量:1

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部