期刊文献+

模糊AND-OR神经网络优化建模方法 被引量:3

Optimization Modeling Approach to Fuzzy AND-OR Neural Network
下载PDF
导出
摘要 采用由AND和OR模糊神经元组成的神经网络进行模糊逻辑建模,每个神经元由S和T算子组合而成,并给出单个神经元作用在模糊集上的效果,充分展示了这两种神经元的优越性,以4条规则为例推导出这类神经网络与“if-then”的规则集之间的等价关系。在神经网络的学习过程中,提出了一种混合式的学习方案采用遗传算法优化整个网络的结构,缩小了输入空间的维数,减少了相应的规则数;并在此基础上利用梯度的学习方法继续对相应的参数进行优化,从而使网络具有很好的优越性,为进一步模糊控制创造了良好的平台。 The AND neuron and OR neuron are adopted to make up of a newly neural network for fuzzy logic model in this paper,every neuron is constructed of S operator and T operator,the result of a single neuron acting on fuzzy sets is exhibited. The structure of the network directly is equivalent to a collection of "if-then" statements. The hybrid learning optimization procedure is consisted of two main phases. Firstly the structure of the whole network is optimized by genetic algorithm, the dimension of input space is reduced,and the number of rules is shortened;the second phase is aiming at refining the candidate parameters from genetic algorithm by gradient-based learning. The superiority of network is obvious.
作者 隋江华 任光
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2006年第4期111-114,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 交通部交通应用基础研究项目基金资助课题(200332922505) 高等学校博士学科点专项科研基金资助课题(20030151005)
关键词 模糊逻辑建模 神经网络 遗传优化 梯度优化 连通度 fuzzy logic-based models neural network genetic optimization gradient-based learning con-nectivity
  • 相关文献

参考文献4

  • 1PEDRYCZ W,REFORMAT M.Genetically optimized logic models[J].Fuzzy Sets and Systems,2005,150(2):351-371. 被引量:1
  • 2杨钟瑾,史忠科.神经网络结构优化方法[J].计算机工程与应用,2004,40(25):52-54. 被引量:9
  • 3HIROTA K,PEDRYCZ W.OR/AND neuron in modeling Fuzzy set connective[J].IEEE Transactions on Fuzzy Systems,1994,2(2):151-161. 被引量:1
  • 4PEDRYCZ W.Fuzzy Sets Engineering[M].Boca Raton:CRC Press,Fl,1995. 被引量:1

二级参考文献24

  • 1S Haykin,Neural Networks.A Comprehensive Foundation[M].New York:Macmillan, 1994 被引量:1
  • 2R Fletcher. Practical Methods of Optimization[M].New York :Wiley,1990 被引量:1
  • 3D E Rumelhart,G E Hinton,R J Williams.Learning Internal Representations by Error Propagation[C].In :D E Rumelhart,J L McClelland eds.Parallel Distributed Processing:Explanations in the Microstructure of Cognition, Cambridge, MA: MIT Press, 1986-01: 318~362 被引量:1
  • 4S Kung,F Fallside,J A Sorenson et al. Neural Networks for Signal Processing[C].In:Proceedings of the 1992 IEEE Workshop, 1992:255~266 被引量:1
  • 5I Guyon,P S P Wang. Special Issue on Neural Networks and Pattern Recognition [J].Pattern Recognition Artificial Intelligence,1993;7(4):849~872 被引量:1
  • 6J H Friedman. An Overview of Predictive Learning and Function Approximation[C].In:J H Friedman,H Wechsler eds. From Statistics to Neural Networks:Theory and Pattern Recognition Applications,Proceedings of the ASI Conference,Subseries F,New York :Springer-Verlag,1994 被引量:1
  • 7J Moody. Prediction Risk and Architecture Selection for Neural Networks[C].In :V Cherkassky,J Friedman,H Wechsler eds. From Statistics to Neural Networks :Theory and Pattern Recognition Applications,NATO ASI Series F, New York: Springer-Verlag, 1994:136,147~165 被引量:1
  • 8S E Fahlman,C Lebiere.The Cascade-Correlation Learning Architecture[C].In:D S Touretzky ed.Advances in Neural Information Processing Systems,San Mateo,CA: Morgan Kaufmann, 1990-02: 524~532 被引量:1
  • 9R Reed.Pruning Algorithms-A Survey [J].IEEE Transaction on Neural Networks, 1993 ;4(5 ) :740~747 被引量:1
  • 10S A Harp,T Samad,A Guha. Designing Application-Specific Neural Networks Using the Genetic Algorithm[C].In:D S Touretzky ed.Advances in Neural Information Processing Systems ,San Mateo, CA:Morgan Kaufmann, 1989-02: 447~454 被引量:1

共引文献8

同被引文献18

  • 1孟令启,马金亮,王海龙,徐如松.基于人工神经网络的中厚板轧机应力状态系数模型[J].郑州大学学报(理学版),2007,39(3):127-130. 被引量:5
  • 2胡乃平,段利亚.基于双边滤波与自适应灰度的钢筋图像预处理(英文)[J].广西师范大学学报(自然科学版),2006,24(4):219-222. 被引量:2
  • 3[1]Phiasai T,Arunrungrushi S,Chamnongthai K.Face recognition system with PCA and moment invariant method[C]//The 2001 IEEE International Symposium on Circuits and System,2001:165-168. 被引量:1
  • 4[2]Pujol A,Vitvia J,Lumbrevas F,et al.Topological principal component analysis for face encoding and recognition[J].Pattern Recognition Letters,2001,22(6):769-776. 被引量:1
  • 5[3]Mr M J,Wu Shiqian,Lu Juwei,et al.Facerecognition with radial basis function (RBF) neural networks[J].IEEE Transactions on Neural Networks,2002,13(3):697-710. 被引量:1
  • 6[4]Lin Guo,Huang Deshuang.Human face recognition based on radial basis probabilistic neural network[C] //Proceeding of the International Joint Conference on Neural Networks,2003,3(20-24):2208-2211. 被引量:1
  • 7[6]Nielsen R H.Theory of the back-propagation neural network[C]//Proceeding of International Joint Conference on Neural Networks,1989:583-604. 被引量:1
  • 8HAYASHI Y,SETONO R,YOSHIDA K. A comparison between two neural network rule extraction techniques for the diagnostic of hepatobiliary disorder[J]. Artif Intell Med, 2000,20 : 205-216. 被引量:1
  • 9RUDY S,WEE K L. FERNN:an algorithm for fast extraction of rules from neural networks[J]. Applied Intelligence, 2000,12(2):15-25. 被引量:1
  • 10SABRINA S,THARAM D. Using single-layered neural networks for the extraction of conjunctive rules and hierarchical classifications [J]. Applied Intelligence, 1993,1 (2) : 45-60. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部