期刊文献+

核函数支持向量机 被引量:14

Kernel-based support vector machines
下载PDF
导出
摘要 概述了基于核函数方法的支持向量机。首先简要叙述支持向量机的基本思想和核特征空间,然后重点介绍核函数支持向量机的前沿理论与领先技术,同时描述了核函数支持向量机在关键领域的应用。 This paper presents a survey of kernel-based support vector machines.The main ideas of support vector machines and kernel feature spaces are described briefly,and then a description of the kernel methods for support vector machines is indroduced,including details of the recent advanced techniques and its key applications.
作者 杨钟瑾
出处 《计算机工程与应用》 CSCD 北大核心 2008年第33期1-6,24,共7页 Computer Engineering and Applications
基金 广东省高等学校自然科学研究重点项目(No.05Z013)。
关键词 核函数 支持向量机 推广性能 kernel support vector machines generalization performance
  • 相关文献

参考文献86

  • 1Vapnik V.The nature of statistical learning theory[M].New York: Springer Verlag, 1995. 被引量:1
  • 2Schoelkopf B,Smola A.Learning with kemels[M].Cambridge,Massachusetts:The MIT Press,2002. 被引量:1
  • 3Aizerman M,Braverman E,Rozonoer L.Theoretical foundations of the potential function method in pattern recognition learning[J].Automation and Remote Control, 1964,25:821-837. 被引量:1
  • 4Vapnik V.Statistical learning theory[M].New York:Wiley, 1998. 被引量:1
  • 5Haykin S.Neural networks,a comprehensive foundation[M].New York:Macmillan, 1994. 被引量:1
  • 6杨钟瑾,史忠科.神经网络结构优化方法[J].计算机工程与应用,2004,40(25):52-54. 被引量:9
  • 7阎平凡,张长水编著..人工神经网络与模拟进化计算 第2版[M].北京:清华大学出版社,2005:639.
  • 8Mercer J.Functions of positive and negative type and their connection with the theory of integral equations[J].Philosophical Transactions of the Royal Society of London, 1909,A209:415-446. 被引量:1
  • 9Bertsekas D P.Nonlinear programming[M].Belmont,MA:Athena Scientific, 1995. 被引量:1
  • 10Mangasarian O LA finite Newton method for classification,optim[J]. Methods and Software, 2002,17 : 913-929. 被引量:1

二级参考文献24

  • 1S Haykin,Neural Networks.A Comprehensive Foundation[M].New York:Macmillan, 1994 被引量:1
  • 2R Fletcher. Practical Methods of Optimization[M].New York :Wiley,1990 被引量:1
  • 3D E Rumelhart,G E Hinton,R J Williams.Learning Internal Representations by Error Propagation[C].In :D E Rumelhart,J L McClelland eds.Parallel Distributed Processing:Explanations in the Microstructure of Cognition, Cambridge, MA: MIT Press, 1986-01: 318~362 被引量:1
  • 4S Kung,F Fallside,J A Sorenson et al. Neural Networks for Signal Processing[C].In:Proceedings of the 1992 IEEE Workshop, 1992:255~266 被引量:1
  • 5I Guyon,P S P Wang. Special Issue on Neural Networks and Pattern Recognition [J].Pattern Recognition Artificial Intelligence,1993;7(4):849~872 被引量:1
  • 6J H Friedman. An Overview of Predictive Learning and Function Approximation[C].In:J H Friedman,H Wechsler eds. From Statistics to Neural Networks:Theory and Pattern Recognition Applications,Proceedings of the ASI Conference,Subseries F,New York :Springer-Verlag,1994 被引量:1
  • 7J Moody. Prediction Risk and Architecture Selection for Neural Networks[C].In :V Cherkassky,J Friedman,H Wechsler eds. From Statistics to Neural Networks :Theory and Pattern Recognition Applications,NATO ASI Series F, New York: Springer-Verlag, 1994:136,147~165 被引量:1
  • 8S E Fahlman,C Lebiere.The Cascade-Correlation Learning Architecture[C].In:D S Touretzky ed.Advances in Neural Information Processing Systems,San Mateo,CA: Morgan Kaufmann, 1990-02: 524~532 被引量:1
  • 9R Reed.Pruning Algorithms-A Survey [J].IEEE Transaction on Neural Networks, 1993 ;4(5 ) :740~747 被引量:1
  • 10S A Harp,T Samad,A Guha. Designing Application-Specific Neural Networks Using the Genetic Algorithm[C].In:D S Touretzky ed.Advances in Neural Information Processing Systems ,San Mateo, CA:Morgan Kaufmann, 1989-02: 447~454 被引量:1

共引文献8

同被引文献196

引证文献14

二级引证文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部