期刊文献+

粗糙集连续属性离散化的SOM网络方法(英文) 被引量:1

Discretization Algorithm for Continuous Attribute in Rough Set Theory Based on Heuristic SOM
下载PDF
导出
摘要 基于Rough Set理论中的不可分辨性原理,给出两个新的定义属性的最大区分值(Maximum Dis-cernibility Value,MDV)和属性冗余度(Attribute Redundancy Rate,ARR)。在数据预处理阶段,属性的MDV数值用于确定关于自组织映射网络SOM输出单元数量的启发式搜索策略;属性冗余度则用于衡量属性约简结果的信息冗余程度,并以此作为优化SOM网络输出层结构的依据。不依赖于领域经验知识,建立了MDV、SOM、ARR的组合算法模型,实现了Rough Set理论中连续属性的自动离散化计算,并明显提高了属性约简的速度。最后,通过项目实例对全过程进行有效验证。 In this paper,based on the indiscernibility discipline in Rough Set theory,two new measurement definitions are defined;attribute Maximum Discernibility Value (MDV) and Attribute Redundancy Rate (ARR). MDV is introduced to decide the heuristic strategy for the Self-Organizing feature Map (SOM) neural network in the data preprocessing stage. And the attribute redundancy rate is for the attribute reduction as a effective feedback to the SOM clustering. Independent of domain experience,the combination of MDV,SOM, Skowron reduction,and the ARR can adjust the clustering number for every continuous attirbute automatically. Therefore ,in theory ,the computational speed is heightened greatly for the rough set attribute reduction. And in the end,a virtual project application is demostrated for the whole process effectively.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2006年第4期46-49,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 Sino-German Goverment Cooperation Project (2002DFG00027)
关键词 SOM ROUGH SET 属性可分辨性 聚类 机器学习 SOM rough set attribute discretization cluster machine learning
  • 相关文献

参考文献2

二级参考文献14

  • 1李爱平 吴泉源.基于加权模糊逻辑的推理机的研究和实现[J].高技术通讯,2001,:17-23. 被引量:1
  • 2Tsumoto,Shusaku. Rough Set Methods and Applications[M].New York:Physica_Verlag, 2000. 被引量:1
  • 3Orlowska, Ewa. Incomplete Information: Rough Set Analysis[M].New York: Physica_Verlag, 1998. 被引量:1
  • 4Francis E H Taya,Lixiang Shen. Fault diagnosis based on Rough Set Theory[J].Engineering Applications of Artificial Iutelligence,2003;16:39-43. 被引量:1
  • 5F E H Tay,L Shen.Economic and ?nancial prediction using rough sets model[J].European Journal of Operational Research,2002; 141:641-659. 被引量:1
  • 6Slowinski R.RoughClassifica tion of HSV Patients. Intelligent Decision Support[M].Kluwer:Roman Slowinski, 1992:77-944. 被引量:1
  • 7Hu X H,Cercone N.Learning in relational databases:A rough set approach[J].Inter J of Computational Intelli-gence, 1995; 11 (2) :323-3385. 被引量:1
  • 8Lenarcik A,Piasta Z.Discretizationof Condition Attributes Space. Intelligent Decision Support[M].Kluwer:Roman Slowinski,1992:373-389. 被引量:1
  • 9罗宽 周文泌.油菜病害及其治理[M].北京:中国商业出版社,1994.67-79. 被引量:5
  • 10苗夺谦.Rough Set理论中连续属性的离散化方法[J].自动化学报,2001,27(3):296-302. 被引量:139

共引文献18

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部