期刊文献+

基于粗糙集属性约简的文本分类 被引量:7

Text Categorization Based on Rough Set Attributes Reduction
下载PDF
导出
摘要 基于属性约简的方法,放弃以往复杂的规则匹配算法,提出将约简后的多种属性组进行析取,筛选特征项,并构造分类器.实验结果表明,此算法不仅简单,还能降低维数和提高分类结果. Based on attributes reduction and discarding old complicated algorithms of matching rules, the method of combining several attributes set after attribute reduction and filtering the attributes, then constructing classifiers is presented. The results show that this way is not only easy, but also reduces the dimension and advances the results of categorization.
出处 《郑州大学学报(理学版)》 CAS 2007年第2期100-103,共4页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 编号60373095 60673039 国家高科技863计划项目 编号2006AA01Z151
关键词 文本分类 向量空间模型 粗糙集 属性约简 text categorization vector space model rough set reduction of attribute
  • 相关文献

参考文献8

二级参考文献18

  • 1曾雪强,王明文,陈素芬.一种基于潜在语义结构的文本分类模型[J].华南理工大学学报(自然科学版),2004,32(z1):99-102. 被引量:27
  • 2S.E.Robers and S.Walker, Okapi/Keenbow at TREC8[A] .In:E.M. Voorhees and D.K.Harmann, editor, Proceedings of the Eighth Text Retrieval Conference(TREC- 8)[C] ,Gaithershurg,2000. 被引量:1
  • 3Yang Yiming, Pederson Jan O. A comparative study on feature selection in text categorization [A]. Proceedings of the 14th International Conference on Machine learning[C]. Bled: Morgan Kaufmann, 1997: 258-267. 被引量:1
  • 4Liu Tao, Liu Shengping, Chen Zheng. An evaluation on feature selection for text clustering [A]. Proceedings of the 20th International Conference on Machine learning[C]. Washington DC:2003. 被引量:1
  • 5Yang Yiming,Pederson J O.A Comparative Study on Feature Selection in Text Categorization [A].Proceedings of the 14th International Conference on Machine learning[C].Nashville:Morgan Kaufmann,1997:412-420. 被引量:2
  • 6Y.Yang.Noise reduction in a statistical approach to text categorization[A].Proceedings of the 18th Ann Int ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR95)[C].Seattle:ACM Press,1995:256-263. 被引量:2
  • 7Thorsten Joachims,Text Categorization with Support Vector Machines:Learning with Many Relevant Features[A],In:European Conferrence on Machine Learning (ECML)[C].Berlin:Springer,1998,137-142. 被引量:2
  • 8Mlademnic,D.,Grobelnik,M.Feature Selection for unbalanced class distribution and Nave Bayees[A].Proceedings of the Sixteenth International Conference on Machine Learning[C].Bled:Morgan Kaufmann,1999:258-267. 被引量:2
  • 9梁久祯 兰东俊 扈旻.基于先验知识的网页特征压缩与线性分类器设计[A]..第十二届全国神经计算学术大会论文集[C].北京:人民邮电出版社,2002.494-501. 被引量:2
  • 10何新贵,彭甫阳.中文文本的关键词自动抽取和模糊分类[J].中文信息学报,1999,13(1):9-15. 被引量:54

共引文献230

同被引文献67

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部