期刊文献+

开滤子Domain的分配性(英文) 被引量:1

A Note on Distributivity of Open Filter Domains
下载PDF
导出
摘要 滤子和开滤子是研究序结构和拓扑结构的非常有用的工具.作者通过反例说明L即使为完全分配代数格也无法保证OFilit(L)的分配性,并且证明了对于连续分配半格L,其开滤子DomainOFilt(L)为分配格当且仅当L稳定连续. Filiters and open filters are useful utilities to explore strctures of domains. In this paper, it is proved that for a continuous distributive semilattice L, OFilt ( L ) is a distributive lattice iff L is stably continuous. And an example is given to show that in the general case the distributivity of L cannot imply that of OFilt (L).
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期992-995,共4页 Journal of Sichuan University(Natural Science Edition)
基金 National Science Foundation of China(0020105401084)and the Science and Technology Research Project of Chongqing Educational Committee(KJ061102)
关键词 分配半格 开滤子Domain 稳定连续 distributive semilattice open filter domains stably continuous
  • 相关文献

参考文献7

  • 1Gierz G, Hofmann K H. Contiuous Lattices and Domains[ M]. Berlin/Heidelberg:Springer Verlag, 2003. 被引量:1
  • 2Abramsky A, J ung A. Domain Theory[ M]//Abramsky S, et al. Handbook of Logic in Computer Science. Oxford: Oxford University Press, 1994. 被引量:1
  • 3Xie L, Song Y J. On distributive complete lattices for which the Scott topology has a basis of open filters[J]. Acta Mathematica Sinica (Chinese Series), 2000, 43(2) :213. 被引量:1
  • 4Wehrung F. Distributive semilattices as retracts of ultraboolean ones; functorial inverses without adjunction[J ]. J. Pure and Applied Algebra, 2005(202) :201. 被引量:1
  • 5J.H.LIANG,K.KEIMEL.Order Environments of Topological Spaces[J].Acta Mathematica Sinica,English Series,2004,20(5):943-948. 被引量:3
  • 6Engelking R. Outline of General Topology[ M]. Warszawa. Pwn-polish Scientific Publishers, 1968. 被引量:1
  • 7Gratzer G. Gernaral Lattice Theory[ M]. Basel: Birkhauser Verlag, 1998. 被引量:1

二级参考文献1

  • 1LIANG JIHUA LIU YINGMING Institute of Mathematics, Sichuan University, Chengdu 610064, China. Institute of Mathematics, Sichuan University, Chengdu 610064, China..ON THE SPACES OF THE MAXIMAL POINTS[J].Chinese Annals of Mathematics,Series B,2003,24(3):303-308. 被引量:2

共引文献2

同被引文献8

  • 1Hamrin G, V Stoltenberg-Hansen. Two categories of effective continuous cpos[J]. Theoretical Computer Science, 2006, 365: 226. 被引量:1
  • 2Abramsky S, Jung A. Domain theory, handbook of logic in computer science[M]. Oxford.. Oxford Uni- versity Press, 1994. 被引量:1
  • 3Gierz G, Hofmann K H, Keimal K, et al. Continu- ous lattices and domains[M]. Cambridge: Cambridge University Press, 2003. 被引量:1
  • 4Liu B, Xi X Y, Liu H. Lawson compactness on function spaces of domains[J]. Topology and its Ap- plications, 2010, 157: 654. 被引量:1
  • 5Liang J H , Keimel K. Compact Continuous L-do- mains[J]. Computers and Mathematics with Applica- tions, 1999, 38: 83. 被引量:1
  • 6Hofmann D, Waszkiewicz P. Approximation in quan- tale-enriched categories[J]. Topology and its Appli- cations, 2011, 158: 970. 被引量:1
  • 7Romaguera S, Schellekens M P, Valero O. Complex- ity spaces as quantitative domains of computation[J]. Topology and its Applications, 2011, 158: 855. 被引量:1
  • 8原雅燕,寇辉.关于函数空间的超连续性[J].数学年刊(A辑),2010,31(5):571-578. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部