摘要
设f是超越整函数,且T(r, f) = O((logr)βexp((logr)α))(0<α<1,β>0) ,即存在两个正实数K1和K2,使得K1≤(logr)Tβe(xrp,( (fl)ogr)α)≤ K2设g1和g2是超越整函数, g2的级是ρg2(0<ρg2<∞) ,又设ai(z) (i =1,2,…,n, n≤∞)是整函数,且满足T(r, ai(z))=o( T(r, g2))及∑ni =1δ(ai(z) , g2) =1和δ(ai(z) , g2) >0.如果T(r, g1) =o( T(r, g2)) (r→∞)则T(r, f(g1)) =o( T(r, f(g2)))
In this paper, the following results are obtained: Let f be a transcendental meromorphic functions with
T(r,f)=O((log r)^β exp((log r)^α)) 0〈α〈1,β〉0
i. e. , there exists two positive constants K1 and K2 such that K1≤T(r,f)/(log r)^β exp((log r)^α)≤K2;let g1 and g2 are transcendental entire functions and the order of g2 be ρg2 (0 〈 ρg2 〈 ∞), let ai(z) (i = 1,2,...,n, n ≤∞) be entire functions which satisfying T(r, ai (z) ) = o(T(r, g2 ) ) with
∑i-1nδ(ai(z),g2)=1 δ(ai(z),g2)〉0
If T(r, g1) = o(T(r, g2)) (r→∞), then
T(r,f(g1))=o(T(r,f(g2))) r→∞
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第5期47-51,共5页
Journal of Southwest China Normal University(Natural Science Edition)
基金
江苏省教育厅自然科学基金资助项目(02KJD110005) .
关键词
整函数
亚纯函数
增长性
亏函数
entire function
meromorphic function
growth
deficient function