摘要
本文得到了如下结果:设 f(z)是开平面上的亚纯函数,a_i(z)(i=1,2,…,n(f),n(f)≤∞)为满足 T(r,a_i(z))=o{T(r,f)}的亚纯函数,如果 sum from i=1 to n(f) δ(a_i(z),f)=2;且存在 a_k(z)(1≤k≤n(f))有δ(a_k(z),f)=1,则 f(z)是正规增长的.且当 f(z)的下级无穷时其级为正整数.
In this paper,We prove the following theorem:Let f(z) be a meromorphic function,and a_i(z)(i=1,2,...,n(f),n(f)≤∞) be meromor-phic functions which satisfy T(r.a_i(z))=o{T(r,f)}.If sum from i=1 to (?) δ(a_i,(z),f)=2,and there esistsa function a_k(z)(O≤k≤n(f))such that δ(a_i(z)f)=2,then f(z) is of regular growth,andwhen the lower order of f(z) is finite,the order of f(z) is positive integer.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
1993年第3期16-22,共7页
Journal of Nanjing Normal University(Natural Science Edition)