摘要
对任意正数λ,正整数q_1和q_2,记E_1={argz=θ_j|0∣θ_1<θ_2<…<θ_(q1)<2π}及E_2={axgz=φ_j|0■1<φ2<…<φq2<2π},使得E_1∩E_2=■,则(1)存在复平面上的λ级亚纯函数f(z),恰以E_1∪E_2为其T方向且恰以E_2为其Borel方向,(2)存在复平面上的级与下级均为λ的亚纯函数g(z),恰以E_1∪E_2为其Borel方向且恰以E_2为其T方向.
Let λ be a positive number, qland q2 be positive integers. Assume that Ei={argz=θj|0≤〈θ1〈θ2〈…〈θq1〈2π}andE2={argz=φj|0≤ψ1〈ψ2〈…〈ψq2〈2π} such that E1 ∩ E2 = 0. Then (1) there exists a meromorphic function f(z) of order A with E1∪ E2 as its T direction and E2 as its Borel direction, (2) there exists a meromorphic function g(z) of order and lower order λ with E1 ∪ E2 as its Borel direction and E2 as its T direction.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2007年第2期413-420,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10271122)
关键词
有穷正级亚纯函数
T方向
BOREL方向
meromorphic functions of finite and positive order
T direction
Borel direction