期刊文献+

电子鼻数据的预处理技术与应用 被引量:20

Electronic Nose Preprocessing and Its Application
下载PDF
导出
摘要 针对电子鼻的数据特点,提出用一个3维数组保存电子鼻的数据;采用6点平滑方法去除传感器的噪声;在基线校正中,首先通过二阶导数大于零和连续一阶导数大于零的方法找到样本反应起始点,然后减去环境响应值并提取相同长度的数据段,以提高电子鼻的精度和可重复性。对预处理前后的电子鼻数据中提出的特征进行主成分分析发现,预处理后的主成分结果所含的有用信息更多,而且可以很好地区分红富士和姬娜两种不同香味的苹果。 In order to improve the ability of recognition, the influence of data preprocessing in electronic nose was discussed. A 3-D data set was proposed to save electronic nose data. 6 points-smoothing method was used to de-noise the gas sensors data. The baseline was removed and the same respond time was extracted to diminish the influence of environment and improve the precision and repetition of the electronic nose measurements. The first derivative and second derivative of sensors data were used to find the beginning respond points. The maximum of each sensor's respond were extracted as features. Principle component analysis was used to analyze the extracted features before and after preprocessing. The results showed that "fuji" and "jina" apples were well distinguished after preprocessing. After all, the preprocessing is the base of feature extraction and pattern recognition in electronic nose.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2006年第5期83-86,共4页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家"863"高技术研究发展计划资助项目(项目编号:2002AA248051) 国家自然科学基金资助项目(项目编号:30370813) 国家教委博士点基金项目
关键词 电子鼻 数据预处理 主成分分析 Electronic nose, Preprocessing, Principle component analysis
  • 相关文献

参考文献12

  • 1Julian W G,Philip N B.Electronic nose:principles and applications[M].UK London:Oxford University Press,1999. 被引量:1
  • 2邹小波,赵杰文,潘胤飞,黄星奕.基于遗传RBF网络的电子鼻对苹果质量的评定[J].农业机械学报,2005,36(1):61-64. 被引量:26
  • 3Zou Xiaobo,Zhao Jiewen.The study of sensor array signal processing with new genetic algorithms[J].Sensors and Actuators B,2002,87:437~441. 被引量:1
  • 4Zou Xiaobo,Zhao Jiewen,Wu Shouyi,et al.Vinegar classification based on feature extraction and selection from tin oxide gas sensor array data[J].Sensors,2003,3:101~109. 被引量:1
  • 5Penza M,Cassano G.Chemometric characterization of Italian wines by thin-film multi-sensors array and artificial neural networks[J].Food Chemistry,2004,86:283~296. 被引量:1
  • 6Zampolli S,Elmi I,Ahmed1 F,et al.An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications[J].Sensors and Actuators B,2004,101:39~46. 被引量:1
  • 7Brudzewskia K,Osowskib S,Markiewiczb T.Classification of milk by means of an electronic nose and SVM neural network[J].Sensors and Actuators B,2004,98:291~298. 被引量:1
  • 8Marzia Z,Cosimo D,Pietro S.Drift counteraction with multiple self-organising maps for an electronic nose[J].Sensors and Actuators B,2004,98:305~317. 被引量:1
  • 9Jacques N,Anne C R.Establishing the limit of detection and the resolution limits of odorous sources in the environment for an array of metal oxide gas sensors[J].Sensors and Actuators B,2004,99:384~392. 被引量:1
  • 10Dehan L,Gholam H H,John R S.Application of ANN with extracted parameters from an electronic nose in cigarette brand identification[J].Sensors and Actuators B,2004,99:253~257. 被引量:1

二级参考文献11

共引文献41

同被引文献382

引证文献20

二级引证文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部