期刊文献+

基于PPGA-MBP的神经网络优化及其应用 被引量:5

Optimal Design of Neural Networks with Pseudo-parallelism Genetic Algorithm and It's Application in Economic Forecast
下载PDF
导出
摘要 多物种并行进化遗传算法应用于神经网络拓扑结构的设计,开辟了新的研究领域,论文提出伪并行(PPGA-MBP)混合遗传算法,结合改进的BP算法优化多层前馈神经网络的拓扑结构。算法采用实数编码来克服传统二进制编码的精度不足问题,并设计基于层次的杂交算子允许结构相异的个体杂交重组成新的个体,适应度函数更是综合考虑了均方误差、网络结构复杂度和网络的泛化能力等因素。实验证明取得了明显的优化效果,提高了神经网络的自适应能力和泛化能力,具有全局快速收敛的性能。论文还运用该算法建立了工业增产值经济预测网络模型,将网络预测值和多项式拟合值进行了对比分析。 Muhigroup parallel genetic algorithm has been introduced as a learning method form Muhilayer Feedforword Neural Networks(MFNN).A novel approach,combined Pseudo-parallelism evolution technique based on sub-population competition with improved BP mechanism(PPGA-MBP),is presented to evolve the weights and biases of all the MFNN.First,real encoding is introduced to solve the accuracy insufficiency problem of the traditional binary encoding.In addition,a new based-layers crossover operator is devised to enhance the algorithm performance,which allows that two net works with different number of units can be crossed to a new valid "child" network.Furthermore,fitness function is composed of mean squared error,network structure complexity and generalization ability.The experimental results show that it can solve the N-bit parity problem and enable to get the real-time information of population diversity during the process of evolution and has some improvements in both global converging velocity and searching precision.In the end,the best network is chosen as a solution to the economic forecasting problem.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第13期73-76,共4页 Computer Engineering and Applications
基金 济南大学科技基金资助项目(编号:Y0425)
关键词 神经网络 伪并行遗传算法 遗传算法 经济预测 neural network,pseudo-parallelism genetic algorithm,genetic algorithm,economic forecast
  • 相关文献

参考文献5

二级参考文献18

  • 1(美)Z.米凯利维茨.演化程序--遗传算法和数据编码的结合[M].北京:科学出版社,2000.. 被引量:1
  • 2李智勇 朱陶业.广西壮族自治区电力负荷预报系统研究课题结题报告[R].南宁,2001.. 被引量:1
  • 3裘聿皇 刘雁飞.关于遗传算法收敛性的注记[A]..第三届全球智能控制与自动化大会论文集[C].合肥,2000.508-511. 被引量:1
  • 4李智勇 朱陶业.河南省电力负荷预报系统研究课题结题报告[R].长沙:长沙电力学院应用数学研究所,2000.. 被引量:1
  • 5李智勇 朱陶业.文本壮族自治区电力负荷预报系统研究课题结题报告[R].南宁,2001.. 被引量:1
  • 6Bornholdt A.General Asymmetric Neural Networks and Structure Design by Genetic Algorithms[J]. Neural Networks. 1992, 5(2). 被引量:1
  • 7Moghram I, Rahams S. Analysis and evaluation of five short term load forecasting techniques[J], IEEE Trans. OnPower System. 1989,4(4): 1484-1491 被引量:1
  • 8Sareni B, Krahenbuhl L. Fitness sharing and niching methods revisited [J]. IEEE Trans on Evolutionary Computation, 1998, 2(3): 97-108. 被引量:1
  • 9Goldbreg E E. Genetic Algoritms in Search, Optimization and Machine Learning [M]. MA: Addison Wesley Publishing Company,1989. 被引量:1
  • 10李智勇 朱陶业.广西自治区电力负荷预报系统研究课题结题报告[R].,2001.. 被引量:2

共引文献26

同被引文献29

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部