期刊文献+

具有多峰正态分布属性的视频语义分类研究

Study of Video Semantic-concept Classifier with Multi-normal Distribution Attribute
下载PDF
导出
摘要 视频语义分类中常遇到多峰正态分布属性,如采用单峰值正态分布设计的贝叶斯分类模型会造成较大分类误差。本文采用定步长组合划分算法(FLCPA)对多峰分布属性值域按类进行划分,以留一校验法(LOOCV)估算分类错误,找出给定步长下属性的多峰分布边界点,并用监督参数估计推断出每个分段区间上的概率分布函数,从而得到整个值域上的总体分布。此外,文中给出了涉及多峰分布属性的视频语义分类器设计步骤。实验数据表明,该方法能明显降低分类错误,有效提高分类性能。 Attributes with multi-normal distribution are common in classifier design for video-semantic concept. In this case, a model assuming that the value of attributes for each class is normally distributed with some mean will lead to poor classification performance. In the paper, an approach based on fixed-length combination partition algorithm (FLCPA) is presented in the partition of attribute value-field. Leave-one-out cross-validation (LO(R2V) is used to estimate classifier error. In addition, the detail of classifier design about multi-normality distribution attribute is given. The result of experiment indicate the method could reduce classifier error and improve classifier performance.
出处 《计算机科学》 CSCD 北大核心 2006年第4期111-114,共4页 Computer Science
基金 国家自然科学基金(60273035) 江苏省科技攻关项目(BE2003064)资助
关键词 贝叶斯分类器 多峰正态分布属性 视频语义分类 留一校验 类条件概率密度函数 Bayesian classifier, Multi normal distribution, Semantic-based video classifier, LOOCV, Class-conditionaldensity function
  • 相关文献

参考文献11

  • 1Zhou L, et al. Applying the Naive Bayes Classifier to Assist Users in Detecting Speech Recognition Errors [C]. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences, 2005. HICSS '05, Hawaii,USA, 2005. 183b-183b 被引量:1
  • 2Rui S, Jin W, Chua T S. A Novel Approach to Auto Image Annotation Based on Pairwise Constrained Clustering and Semi-Naive Bayesian Model [C]. In:Proceedings of the 11th International Multimedia Modelling Conference, MMM 2005, Melbourne, Australia, 2005. 322-327 被引量:1
  • 3Wang F, et al. A Generic Framework for Semantic Sports Video Analysis Using Dynamic Bayesian Networks [C]. In: Proceedings of the 11th International Multimedia Modelling Conference,Melbourne, Australia, 2005. 115-122 被引量:1
  • 4ISO/IEC JTC1/SC29/WG11, Int' 1 Organization for Standarisation, Overview of the MPEG-7 Standard [S]. 2000 被引量:1
  • 5边肇棋 张学工 等.模式识别[M].北京:清华大学出版社,2000.235. 被引量:20
  • 6卢力,田金文,柳健.统计模式识别研究进展.http: //www. cioworld. net/cgi-new/violethtml/2/2004-04-24/ 20040424165850.html, 2005 被引量:1
  • 7Thornaz C,D G, Q F. A New Covariance Estimate for Bayesian Classifiers in Biometric Recognition [J]. IEEE Trans. on circuits and Systems for video technology, 2004, 14(2): 214-223 被引量:1
  • 8Pazzani J M. An iterative improvement approach for the discretization of numeric attributes in Bayesian classifiers [C]. In: Int'1 Knowledge discovery and mining, Montreal, Canada, 1995. 228-233 被引量:1
  • 9Mittal A L-F C. Addressing the problems of Bayesian network classification of video using high-dimensional features [J]. IEEE Trans. on Knowledge and Data Engineering, 2004, 16(2):230-244 被引量:1
  • 10What are cross-validation and bootstrapping, http:// www.faqs.org/faqs/ai-faq/neural-nets/part3/section-12. html 被引量:1

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部