期刊文献+

聚合物前驱体制备氮化硅纳米纤维及其发光 被引量:1

Fabrication of Si_3N_4 Nanofibers from Polymer and Its Optical Property
下载PDF
导出
摘要 由聚硼硅氮烷前驱体在高温常压下热裂解得到氮化硅纳米纤维,确定了样品结构为α相,讨论了纳米纤维的生长模式属于气-液-固生长机制。在室温下用488 nm激光对样品激发,观察到样品有很宽的强光致发光带,并有两个发光中心,这种强的可见光致发光主要来自氮化硅的内禀S i和N的悬键。测量了纳米纤维的室温吸收光谱,得到氮化硅纳米纤维的光学带隙为4.80 eV。 A method to prepare crystal silicon nitride nanofibers by polysis of polymer with the assistant of FeCl2 catalyst has been presented in this paper. Scanning electronic microscopy(SEM) showed that the size of the nanofibers mostly are 100 -200 nm in diameter and up to several microns in length. The growth mechanism can be explained by vapor-liquid-solid (VLS) model. The XRD pattern of the nanofibers indicated that the fiber belongs to α phase and no other crystalline phases were detected. The optical properties of the single crystalline α-Si3N4 were characterized by absorption and photoluminescence (PL). The optical absoorption spectrum showed the relationship between absorption coefficient a verse photo energy hv. In order to investigate the optical band gap of α-Si3 N4 nanofibers, we plot the relationship between (ahv)2 and photon energy hr. A linear relationship was observed. That the nanofibers exhibited direct-gap semiconductor behavior with band gap of -4.80 eV, which is different from pure Si3 N4 ( 5.0 - 5.3 eV). This is possible because the catalyst of Fe is dopped and the Fe element affects the silicon-nitrogen molecular vibration and the states within the band gap of the silicon nitride. Intensive luminescence was observed by bare-eye. The broad emission band can be divided into two discrete broad peak by gaussian type peak fitting. The intensive optical emission are at 1.71 eV and 2.18 eV in PL spectrum at room temperature. It is believed that there exists Si dangling bonds between N3 and Si (called K center) and another point defect identified as the N dangling bonds between Si2 and N (called N center). These point defects consist of an unpaired electron largely localized on a two-coordinated N and on a three coordinated Si atom, respectively. The two defects give rise to different states, the N center corresponds to a level in the valence band, while the K center is associated to a state in the middle of the gap. The PL emission associates to the inherently imperfect α
出处 《发光学报》 EI CAS CSCD 北大核心 2005年第6期794-798,共5页 Chinese Journal of Luminescence
基金 中国科学院"百人计划"资助项目
关键词 聚合物前驱体 氮化硅 纳米纤维 吸收光谱 光致发光 polymer silicon nitride nanofiber absorption spectrum photoluminescence
  • 相关文献

参考文献14

  • 1Zhang Y,Wang N,He R,et al.Reversible bending of Si3N4 nanowire [J].J.Mater.Res.,2000,15(5):1048-1051. 被引量:1
  • 2Ziegler G,Heinrich J,Wotting G.Relationships between processing,microstructure and properties of dense and reaction bonded silicon nitride [J].J.Mater.Sci.,1987,22:3041-3086. 被引量:1
  • 3王岩松,徐世峰,范翊,罗劲松,王文全,安立楠,张立功.聚合物前驱体制备具有竹节结构的Si-B-C-N纳米材料及其发光[J].发光学报,2005,26(3):391-394. 被引量:1
  • 4Han W,Fan S,Li Q,et al.Synthesis of silicon nitride nanorods using carbon nanotube as a template [J].Appl.Phys.Lett.,1997,71(16):2271-2773. 被引量:1
  • 5Gao Y H,Bando Y,Kurashima K,et al.Si3N4/SiC interface structure in SiC-nanocrystal-embedded α-Si3N4 nanorods [J].J.Appl.Phys.,2002,91(3):1515-1519. 被引量:1
  • 6Chen H,Cao Y,Xiang X,et al.Fabrication of β-Si3N4 nano-fibers [J].J.Alloys Compd.,2001,325(1-2):L1-L3. 被引量:1
  • 7Cui H,Stoner B R.Nucleation and growth of silicon nitride nanoneedles using microwave plasma heating [J].J.Mater.Res.,2001,16(11):3111-3115. 被引量:1
  • 8Chen Y,Guo L,Shaw D T.High-density silicon and silicon nitride cones [J].J.Cryst.Growth,2000,210(4):527-531. 被引量:1
  • 9Munakata F,Furuya K,Akimune Y,et al.Optical properties of β-Si3N4 single crystals grown from a Si melt in N2 [J].Appl.Phys.Lett.,1999,74(23):3498-3500. 被引量:1
  • 10Yin Long-Wei,Bando Y,Zhu Ying-Chun.Synthesis,structure and photoluminescence of very thin and wide alpha silicon nitride(α-Si3N4) single-crystalline nanobelts [J].Appl.Phys.Lett.,2003,83(17):3584-3586. 被引量:1

二级参考文献12

  • 1Cai Y, Prinz S, Aldinger F, et al. Electron diffraction study of the local atomic arrangement of as-pyrolysed Si-B-C-N ceramics [J]. Scripta Materialia, 2002, 47:7-11. 被引量:1
  • 2Zimmermann A, Bauer A, Aldinger F, et al. High-temperature deformation of amorphous Si-C-N and Si-B-C-N ceramics derived from polymers [J]. Acta Materialia, 2002, 50:1187-1196. 被引量:1
  • 3Cai Y, Zimmermann S, Aldinger F, et al. Nucleation phenomena of nano-crystallites in as-pyrolysed Si-B-C-N ceramics [J]. Scripta Materialia, 2001, 45:1301-1306. 被引量:1
  • 4Muller A, Zern A, Aldinger F, et al. Boron-modified poly(propenylsilazane)-derived Si-B-C-N ceramics: preparation and high temperature properties [J]. J. Eur. Ceram. Soc., 2002, 22:1631-1643. 被引量:1
  • 5Muller A, Gerstel P, Aldinger F, et al. Correlation of boron content and high temperature stability in Si-B-C-N ceramics Ⅱ [J]. J. Eur. Ceram. Soc., 2001, 21:2171-2177. 被引量:1
  • 6Yu J, Bai X D, Wang E G, et al. Highly oriented rich boron B-C-N nanotubes by bias-assisted hot filament chemical vapor deposition [J]. Chem. Phys. Lett., 2000, 323:529-533. 被引量:1
  • 7Moriyoshi Y, Shimizu Y, Watanabe T. B-C-N nanotubes prepared by a plasma evaporation method [J]. Thin Solid Films, 2001, 390:26-30. 被引量:1
  • 8Mo Chimei, Zhang Lide, Xie Cunyi, et al. Luminescence of nanometer-sized amorphous silicon nitride solids [J]. J. Appl. Phys., 1995, 73(10):5185-5188. 被引量:1
  • 9Oku T, Hirano T, Kuno M, et al. Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials [J]. Mater. Sci. Engin. B, 2000, 74:206-217. 被引量:1
  • 10Robertson J. Electronic structure of silicon nitride [J]. J. Vac. Sci. Technol. A, 1987, 5(4):1998-2002. 被引量:1

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部