摘要
研究了在表面拉伸死载荷的作用下,一类含有微孔的横观各向同性不可压超弹性球体的有限变形问题,对球体内部微孔的增长进行了定性分析,得到了描述微孔增长量与拉伸死载荷平衡关系的方程;然后讨论了材料参数、微孔半径对微孔增长的影响;并且利用最小势能原理,证明了在某些情形下微孔增长的跳跃性;最后给出了数值算例.
A finite deformation problem was examined for a class of incompressible, transversely isotropic about radial direction, and hyperelastic spheres with micro-void under a uniform tensile deadload. A qualitative analysis was carried out for the growth of micro-void in the interior of the sphere. An equation that describes the equilibrium relationship between the measure of void growth and the tensile dead-load is obtained. The effect of material parameter, radius of void on growth of micro-void is then discussed. In certain cases, it is proved that void growth is jumping by using the minimum potential principle. Finally, some numerical examples are given.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2005年第12期1660-1663,共4页
Journal of Tongji University:Natural Science
基金
国家自然科学基金资助项目(10272084)
关键词
不可压超弹性材料
有限变形
最小势能原理
稳定性
incompressible hyperelastic material
finite deformation
minimal potential energy principle
stability