期刊文献+

Optimization of Additively Decomposed Function with Constraints 被引量:2

Optimization of Additively Decomposed Function with Constraints
下载PDF
导出
摘要 We propose a modified evolutionary computation method to solve the optimization problem of additively decomposed function with constraints. It is based on factorized distribution instead of penalty function and any transformation to a linear model or others. The feasibility and convergence of the new algorithm are given. The numerical results show that the new algorithm gives a satisfactory performance. We propose a modified evolutionary computation method to solve the optimization problem of additively decomposed function with constraints. It is based on factorized distribution instead of penalty function and any transformation to a linear model or others. The feasibility and convergence of the new algorithm are given. The numerical results show that the new algorithm gives a satisfactory performance.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第4期85-90,共6页 系统工程与电子技术(英文版)
基金 National Natural Science Foundation of China(60072029)
关键词 CALCULATIONS Convergence of numerical methods OPTIMIZATION PERFORMANCE Calculations Convergence of numerical methods Optimization Performance
  • 相关文献

参考文献4

  • 1Heinz Mühlenbein,Thilo Mahnig,Alberto Ochoa Rodriguez.Schemata, Distributions and Graphical Models in Evolutionary Optimization[J].Journal of Heuristics.1999(2) 被引量:1
  • 2Ren, Qingsheng, Zeng, Jin, Qi, Feihu.Evolutionary Programming for IP/MIP Problems with Linear Constraints[J].Journal of Systems Engineering and Electronics,2000,11(3):59-64. 被引量:2
  • 3Tahk Min-Jea,Sun Byung--Chan.Coevolutionary Augmented Lagrangian Methods for Constrained Optimization[].IEEE Transactions on Evolutionary Computation.2000 被引量:1
  • 4Runarsson Thomas P,Yao Xin.Stochastic Ranking for Constrained Evolutionary Optimization[].IEEE Transactions on Evolutionary Computation.2000 被引量:1

共引文献1

同被引文献3

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部