摘要
在有限变形动力学理论框架下研究了周期载荷作用下不可压超弹性材料球体中的空穴动生成问题。通过对微分方程的数值计算给出了空穴变形的时程曲线、相图和庞加莱截面图等。结果表明对周期载荷的平均载荷存在一个临界值,当平均载荷小于这个临界值时,球壳保持不变形状态;但当平均载荷大于这个临界值时,一个球形空穴可在球壳中心突然生成,且空穴随时间的演化为拟周期振动。
Dynamical cavitation for an incompressible hyper-elastic material sphere subjected to periodic tensile load was examined with the theory of finite elasto-dynamics. Displacement response time history curves, power spectrum curves, phase portraits and Poincare maps were given with numerical computations. It was shown that there exists a critical value for the mean load of the periodic load; when the mean load is less than this critical value, the sphere remains undeformed; however, when it is larger than this critical value, a spherical cavity is suddenly formed at the center of the sphere and the evolution of the cavity with time is a quasi-periodic oscillation.
出处
《振动与冲击》
EI
CSCD
北大核心
2012年第18期10-13,共4页
Journal of Vibration and Shock
基金
国家自然科学基金(10772104
10872045)
上海市教委科研创新项目(09YZ12)
上海市重点学科建设项目(S30106)
关键词
不可压超弹性材料
空穴生成
周期载荷
拟周期振动
incompressible hyper-elastic material
cavitation
periodic load
quasi-periodic oscillation