摘要
在有限变形动力学的框架下,采用Kelvin-Voigt微分型热黏弹性本构关系,建立球体内空穴运动的非线性数学模型,得到了球体的几何参数和材料参数与空穴生成时临界温度的变化关系;给出空穴半径随时间增长的动态变化曲线,并讨论外界温度场、球体的几何尺寸和材料参数对空穴半径增长规律的影响.
The nonlinear mathematical model of describing cavity movement in a composite sphere was established via employing Kelvin-Voigt differential type constitution equations of thermo-viscoelasticity with the aid of the dynamical theory of finite deformation.Variation curves of the geometric and material parameter vs the critical temperature were obtained,dynamical variation curves of cavity radius increasing with time were given,and variation rules of cavity radius dynamical increasing with the external temperature,the geometric dimensions,and the material parameters were also discussed.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2015年第2期320-326,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10772024)
国家爆炸科学与技术重点实验室开放基金(批准号:185KFJJ12-12M)
关键词
热黏弹塑性复合球体
临界温度
有限变形动力学
热空化
动态生长
thermo-visco-elastic plastic composite sphere
critical temperature
finite deformation dynamics
thermal cavitation
dynamical formation and growth