期刊文献+

多类支持向量机的自然图像分类 被引量:7

Improving Scene Image Classification with Multi-Class SVMs
下载PDF
导出
摘要 根据图像的内容把图像划分为多个不同的类别一直是计算机视觉的一个难点。这里提出了一种多类支持向量机用于图像分类的算法,该方法主要在2类支持向量机的基础上用来构造多类分类器,用于把自然图像分成多个类别,同时研究了不同核函数的参数变化对分类效果的影响,实验证明和传统的方法相比,分类的准确性有明显的提高。 We aim to get higher accuracy of scene image classification than attainable with existing methods. We propose using multi-class SVMs (Support Vector Machines) to get this desired higher accuracy. In the full paper, we explain in much detail how to structure multi-SVMs. Here we give only a briefing. Our multi-class SVMs consist of a number of 1-v-1 classifiers and use low-level features such as representative colors and Gabor textures; we make use of relevant information in the two papers by J. Platt[3], J.H. Friedman[5] respectively to structure our multi-class SVMs. In our experiments, we used 448 scene images from http://www.project.-minerva. ex. ac. uk. In this case, multi-class SVMs became 7-class SVMs. These experiments show preliminarily: (1) that the accuracy of scene image classification can be raised from 50%-70% attainable with neural network method, which gives the best accuracy among existing methods, to 60%-80% attainable with our 7-class SVMs; (2) that both different kernel functions and different parameters in a particular kernel function give quite different results of classification.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2005年第3期295-298,共4页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(60175001)资助
关键词 支持向量机 图像分类 低层特征 Classification (of information) Color Feature extraction Functions Neural networks Structures (built objects) Textures Vectors
  • 相关文献

参考文献5

  • 1Vailaya A, Jain K, Zhang H J. On Image Classification: City Images and Landscapes. Pattern Recognition, 1998, 31(12): 1921~1936. 被引量:1
  • 2Szummer M, Picard R. Indoor-Outdoor Image Classification. IEEE International Workshop on Content-Based Access of Image and Video Databases CAIVD'98, Bombay, India, 1998, 42~51. 被引量:1
  • 3Platt J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization in Advances in Kernel Methods. Cambridge, Mass: MIT Pres, 1999, 185~208. 被引量:1
  • 4Manjunath S, Ma W Y. Texture Features for Browsing and Retrieval of Image Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837~842. 被引量:1
  • 5Friedman J H. Another Approach to Polychotomous Classification. Technical Report, Standford University, Department of Statistics, 1998,10 : 1895~1924. 被引量:1

同被引文献62

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部