期刊文献+

PERIODICITY IN A DELAYED SEMI-RATIO-DEPENDENT PREDATOR-PREY SYSTEM 被引量:1

PERIODICITY IN A DELAYED SEMI-RATIO-DEPENDENT PREDATOR-PREY SYSTEM
下载PDF
导出
摘要 A delayed semi-ratio-dependent predator-prey system in a periodic environment is investigated in this paper.By using a continuation theorem based on Gaines and Mawhin's coincidence degree,the global existence of positive periodic solution is studied.A set of easily verifiable sufficient conditions are obtained. A delayed semi-ratio-dependent predator-prey system in a periodic environment is investigated in this paper.By using a continuation theorem based on Gaines and Mawhin's coincidence degree,the global existence of positive periodic solution is studied.A set of easily verifiable sufficient conditions are obtained.
作者 DingXiaoquan
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第2期151-158,共8页 高校应用数学学报(英文版)(B辑)
关键词 semi-ratio-dependent predator-prey system periodic solution coincidence degree. semi-ratio-dependent,predator-prey system,periodic solution,coincidence degree.
  • 相关文献

参考文献9

  • 1Berryman A A. The origins and evolution of predator-prey theory ,Ecology, 1992,73:1530-1535. 被引量:1
  • 2May R M. Stability and Complexity in Model Ecosystems, Princeton: Princeton University Press,1974. 被引量:1
  • 3Tanner J T. The stability and the intrinsic growth rates of prey and predator populations,Ecology,1975,56:855-867. 被引量:1
  • 4Hsu S B,Huang T W. Global stability for a class of predator-prey systems ,SIAM J Appl Math, 1995,55:763-783. 被引量:1
  • 5Gasull A, Kooij R E, Torrregrosa J. Limit cycles in Holling-Tanner model, Publ Mat, 1997,41:149-167. 被引量:1
  • 6Sugie J. Two parameters bifurcation in a predator-prey system of Ivlev type, J Math Anal Appl, 1998,222:349-371. 被引量:1
  • 7Beretta E ,Kuang Y. Global analysis in some delayed ratio-dependent predator-prey systems ,Nonlinear Analysis,T M A,1998,32(3):381-408. 被引量:1
  • 8Wang Q,Fan M ,Wang K. Dynamics of a class of nonautonomous semi-ratio-dependent predator-prey systems with functional responses ,J Math Anal Appl,2003,278:443-471. 被引量:1
  • 9Gaines R E, Mawhin J L. Coincidence degree and nonlinear differential equations, Berlin:Springer-Verlag, 1977. 被引量:1

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部