期刊文献+

Periodicity in a Nonlinear Predator-prey System with State Dependent Delays 被引量:5

Periodicity in a Nonlinear Predator-prey System with State Dependent Delays
原文传递
导出
摘要 With the help of a continuation theorem based on Gaines and Mawhinscoincidence degree, easily verifiable criteria are established for the global existence of positiveperiodic solutions of the following nonlinear state dependent delays predator-prey system{dN_1(t)/dt = N_1(t)[b_1(t) - ∑ from i=1 to n of ai(t)(N_1(t-τ_i(t,N_1(t), N_2(t))))^(α_i) - ∑from j=1 to m of c_j(t)(N_2(t - σ_j(t,N1(t),N_2(t))))^(β_j)] dN_2(t)/dt = N_2(t)[-b_2(t) + ∑ fromi=1 to n of d_i(5)(N_1(t - ρ_i(t,N_1(t),N_2(t))))^(γ_i)], where a_i(t), c_j(t), d_i(t) arecontinuous positive periodic functions with periodic 】 0, b_1(t), b_2(t) are continuous periodicfunctions with periodic ω and ∫_0~ωb_i(t)dt 】 0. τ_i, σ_j, ρ_i (i = 1,2,…,m) are continuousand ω-periodic with respect to their first arguments, respectively. α_i, β_j, γ_i (i = 1,2,…,n,j = 1,2,…,m) are positive constants. With the help of a continuation theorem based on Gaines and Mawhinscoincidence degree, easily verifiable criteria are established for the global existence of positiveperiodic solutions of the following nonlinear state dependent delays predator-prey system{dN_1(t)/dt = N_1(t)[b_1(t) - ∑ from i=1 to n of ai(t)(N_1(t-τ_i(t,N_1(t), N_2(t))))^(α_i) - ∑from j=1 to m of c_j(t)(N_2(t - σ_j(t,N1(t),N_2(t))))^(β_j)] dN_2(t)/dt = N_2(t)[-b_2(t) + ∑ fromi=1 to n of d_i(5)(N_1(t - ρ_i(t,N_1(t),N_2(t))))^(γ_i)], where a_i(t), c_j(t), d_i(t) arecontinuous positive periodic functions with periodic > 0, b_1(t), b_2(t) are continuous periodicfunctions with periodic ω and ∫_0~ωb_i(t)dt > 0. τ_i, σ_j, ρ_i (i = 1,2,…,m) are continuousand ω-periodic with respect to their first arguments, respectively. α_i, β_j, γ_i (i = 1,2,…,n,j = 1,2,…,m) are positive constants.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2005年第1期49-60,共12页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (Tian Yuan Foundation) (No.10426010) the Foundation of Science and Technology of Fujian Province for Young Scholars (2004J0002) the Foundation of Fujian Education Bureau (JA04156, JA0301
关键词 periodic solutions NONLINEAR DELAY PREDATOR-PREY coincidence degree periodic solutions nonlinear delay predator-prey coincidence degree
  • 相关文献

参考文献4

二级参考文献14

  • 1李黎明.一类高维非自治系统的周期解[J].应用数学学报,1989,12(3):272-280. 被引量:38
  • 2陈兰荪 梁肇军.生物动力学系统中的几个研究课题[A]..常微分方程与控制论论文集:武汉学术讨论会[C].,1987.87-98. 被引量:1
  • 3王克,数学学报,1997年,40卷,321页 被引量:1
  • 4Zhao Y Q,Nonlinear Analysis Theory Methods Applications,1994年,23卷,651页 被引量:1
  • 5Kuang Y,Delay Differential Equations with Applications in Population Dynamics,1993年 被引量:1
  • 6He X Z,J Math Anal Appl,1990年,28卷,355页 被引量:1
  • 7Lalli B S, Zhang B G. On a periodicdelay population model[J]. Quart Appl Math, 1994, LII(1):35-42. 被引量:1
  • 8Gopalsamy, K, Ladas G. On the oscillation and asymptotic behavior of N'(t)+N(t)[a + bN(t- τ)- cN2(t-τ)][J]. Quart Appl Math, 1990, XL VIII(3):433-440. 被引量:1
  • 9Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M].Boston: Academic Press, 1993, 143-146. 被引量:1
  • 10Yan J R, Feng Q X. Global attractivity and oscillation in a nonlinear delayequation[J]. Nonlinear Analysis, 2000, 43(1):101-108. 被引量:1

共引文献69

同被引文献49

  • 1Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[ M ]. Berlin:Springer-Verlag, 1977:40-41. 被引量:1
  • 2X.X.Chen.Periodicity in a nonlinear discrete predator-prey system with state dependent delays. Nonlinear Anal.:Real World Appli . 2007 被引量:1
  • 3Y.P.Chen,F.D.Chen.Dynamic behaviors of a discrete nonlinear predator-prey system. Annl.Differential Equations . 2008 被引量:1
  • 4M.Fan,S.Agarwal.Periodic solutions for a class of discrete time competition systems. Nonlinear Studies . 2002 被引量:1
  • 5M.Fan,S.Agarwal.Periodic solutions of nonautonomous discrete predator-prey system of Lotka-Volterra type. Applicable Analysis . 2002 被引量:1
  • 6Z.D.Teng,L.S.Chen.Permanence and extinction of periodic predator-prey systems in patchy environment with delay. Nonlinear Analysis . 2003 被引量:1
  • 7F. Chen,D. Sun,J. Shi.Periodicity in a food-limited population model with toxicants and state dependent delays. Journal of Mathematical Analysis and Applications . 2003 被引量:1
  • 8X. T. Yang.Uniform persistence and periodic solutions for a discrete predator-prey system with delays. J. Math. Anal. Appl . 2006 被引量:1
  • 9Agarwal RP.Difference Equations and Inequalities; Theory, Method and Applications. . 1992 被引量:1
  • 10Berryman AA.The origins and evolution of predator-prey theory. Ecology . 1992 被引量:1

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部