期刊文献+

Unsteady Motion of a Single Droplet in Surfactant Solutions 被引量:2

Unsteady Motion of a Single Droplet in Surfactant Solutions
下载PDF
导出
摘要 A numerical investigation of the unsteady motion of a deformed drop released freely in another quiescent liquid contaminated by surfactant is presented in this paper. The finite difference method was used to solve numerically the coupled time-dependent Navier-Stokes and convective-diffusion equations in a body-fitted orthogonal coordinate system. Numerical simulation was conducted on the experimental cases, in which MIBK drops with the size ranging from 1.24 mm to 1.97 mm rose and accelerated freely in pure water and in dilute sodium dodecyl sulphate (SDS) aqueous solution. The applicability of the numerical scheme was validated by the agreement between the simulation results and the experimental data. Both the numerical and experimental results showed that the velocitytime profile exhibited a maximum rising velocity for drops in SDS solutions, which was close to the terminal velocity in pure water, before it dropped down to a steady-state value. The effect of the sorption kinetics of surfactant on the accelerating motion was also evaluated. It is also suggested that introduction of virtual mass force into the formulation improved obviously the precision of numerical simulation of transient drop motion. A numerical investigation of the unsteady motion of a deformed drop released freely in another quiescent liquid contaminated by surfactant is presented in this paper. The finite difference method was used to solve numerically the coupled time-dependent Navier-Stokes and convective-diffusion equations in a body-fitted orthogonal coordinate system. Numerical simulation was conducted on the experimental cases, in which MIBK drops with the size ranging from 1.24 mm to 1.97 mm rose and accelerated freely in pure water and in dilute sodium dodecyl sulphate (SDS) aqueous solution. The applicability of the numerical scheme was validated by the agreement between the simulation results and the experimental data. Both the numerical and experimental results showed that the velocity-time profile exhibited a maximum rising velocity for drops in SDS solutions, which was close to the terminal velocity in pure water, before it dropped down to a steady-state value. The effect of the sorption kinetics of surfactant on the accelerating motion was also evaluated. It is also suggested that introduction of virtual mass force into the formulation improved obviously the precision of numerical simulation of transient drop motion.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第6期715-725,共11页 中国化学工程学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.20236050)
关键词 SURFACTANT single drop unsteady motion sorption kinetics numerical simulation 表面活性剂 单液滴 非稳态运动 吸附动力学 数值模拟
  • 相关文献

参考文献2

二级参考文献8

共引文献4

同被引文献33

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部