关于Taylor定理几种余项中θ的渐近性
-
1朱庆南.关于多元函数泰勒公式的拉格朗日余项[J].上海建材学院学报,1994,7(1):94-97.
-
2王万禹,张玉林.一类考研题型的万能解法——泰勒公式[J].成都师范学院学报,2015,31(7):104-107. 被引量:1
-
3续铁权.泰勒公式“中间点”的渐近性[J].青岛职业技术学院学报,1996,0(2):25-26.
-
4裘哲勇.关于拉格朗日余项中值点的渐近性[J].杭州电子科技大学学报(自然科学版),1997,22(2):9-12.
-
5王一铁.数值解法的另一种欧拉改进法[J].济南大学学报(社会科学版),1997,8(1):55-57. 被引量:2
-
6王志武,王希超.谈泰勒公式的教学[J].高等数学研究,2014,17(5):40-42. 被引量:4
-
7刘俊英,雪莲.关于泰勒(Taylor)中值定理的一个证明[J].内蒙古农业大学学报(自然科学版),2008,29(1):199-201. 被引量:2
-
8李涛.泰勒公式及其应用[J].新课程(教研版),2013(1):184-185. 被引量:1
-
9王殿元.带不同型余项泰勒公式的证明[J].电大理工,2000(4):36-38.
-
10刘春奇,秦霞.带有拉格朗日余项的泰勒公式的应用探讨[J].数学学习与研究,2013,0(1):128-128. 被引量:2
;