期刊文献+

基于GA-Fuzzy的混沌系统辨识研究 被引量:6

GA-Fuzzy Identification of Chaotic Systems
下载PDF
导出
摘要 提出用遗传算法优化的Takagi-Sugeno-Kang(TSK)模糊模型对未知或不确定的混沌动力学系统进行辨识。在辨识未知混沌系统的TSK模型过程中,只需利用未知混沌系统的输出时间序列。首先,采用模糊聚类分析方法从训练数据建立其初始TSK模糊模型。然后采用实数编码的遗传算法对初始模型进行优化设计。同时为防止破坏模糊规则的语义属性,对遗传搜索空间采取了适当的限制。用辨识模型重建吸引子方法定性地评价辨识模型,通过计算辨识模型的Lyapunov指数定量地评价辨识模型的性能。仿真结果表明,该辨识模型能很好地逼近原混沌动力学系统,准确地体现原混沌系统的动力学特性。 This paper presents a fuzzy logic-based approach optimized by genetic algorithms (GA) to identify the unknown or uncertain chaotic dynamic systems. Only output data of the underlying system are required to establish the Takagi-Sugeno-Kang (TSK) fuzzy model. The suggested algorithm is composed of two steps. First fuzzy clustering is applied to obtain a compact initial TSK fuzzy model from the data for training. Then this model is optimized by a real-coded GA subjected to constraints that maintain the semantic properties of the rules. A qualitative evaluation of the identified models is made with the reconstruction of an attractor by the identified models, and a quantitative evaluation of the identified models is made with calculation of the Lyapunov exponents of the identified models, too. Simulations show that the identified models can approach the original chaotic dynamic systems and extract the dynamical characteristics of the original chaotic systems.
出处 《系统仿真学报》 CAS CSCD 2004年第6期1323-1325,1329,共4页 Journal of System Simulation
关键词 混沌 混沌系统辨识 模糊聚类 TSK模糊模型 实数编码遗传算法 时间序列 chaos chaotic systems identification fuzzy clustering TSK fuzzy model real-coded GAs time series
  • 相关文献

参考文献10

  • 1Chen G R. Control and synchronization of chaotic systems (a bibliography) [EB/OL]. ECE Department, Univ. Houston, TX, available from ftp: ftp.erg.uh.edu/pub/TeX/chaos.tex (login name ''anonymous'' and password: your email address.). 被引量:2
  • 2Wang H, Tanaka K, Ikeda T. Fuzzy modeling and control of chaotic systems [A]. Proceedings of IEEE Int. Symp. Circuits and Systems [C]. 1996, 3: 209-212. 被引量:1
  • 3Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Trans. Syst, Man, Cybernetics, 1985, 15: 116-132. 被引量:2
  • 4Chen L, Chen G R. Fuzzy Modeling, Prediction, and Control of Uncertain Chaotic Systems Based on Times Series [J]. IEEE Trans. Circuits and Systems. I, 2000, 47(10): 1527-1531. 被引量:1
  • 5Ramazan Gencay. Nonlinear prediction of noise time series with feedforward networks [J]. Physics Letters A, 1994, 187: 397-403. 被引量:1
  • 6Ramazan Gencay, Liu Tung. Nonlinear modeling and prediction with feedforward and recurrent networks [J]. Physica D, 1997, 108: 119-134. 被引量:1
  • 7Goldberg D. Genetic Algorithm in Search Optimization and Machine Learning [M]. Adddison-Wesley, Reading, 1989. 被引量:1
  • 8Magne Setnes, Hans Roubos. GA-Fuzzy Modeling and Classification: Complexity and Performance [J]. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 509-522. 被引量:1
  • 9Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series [J]. Physics Letter A, 1994, 185(1): 77-85. 被引量:1
  • 10Tanaka K, Ikeda T, Wang H O. A Unified Approach to Controlling Chaos via an LMI-Based Fuzzy Control System Design [J]. IEEE Transaction on Circuits and Systems. I, 1998, 45(10): 1021-1040. 被引量:1

共引文献1

同被引文献44

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部