期刊文献+

基于混沌模拟退火算法的BPNN模型的随机混沌系统辨识

Identifying Stochastic Chaotic System Based on BPNN and Algorithms of Chaos-Annealing Strategy
下载PDF
导出
摘要 文章针对随机混沌系统辨识引入贝叶斯正则化方法的BPNN模型,使神经网络具有自适应性和推广能力;并交替使用贝叶斯正则化算法和混沌退火算法对网络参数进行优化,使系统具有最佳参数.以Logistic系统为例进行仿真分析,结果表明辨识模型不仅能够拟合原混沌系统,而且训练后的网络对含噪声的随机混沌系统有很好的辨识能力,精度良好.为下一步的设计控制器对混沌系统进行控制消除混沌,奠定了良好的基础. To identify stochastic chaotic system, Bayesian regularization and the hybrid algorithms of Chaos-Annealing strategy are used to train BPNN and to optimize the model's parameters by the original data, and a wanted neural network model having best parameters is found. Then this trained model is applied to identify stochastic chaotic system. The simulation applied to identify chaotic systems of Logistic system show that the identified models can approach the original system and can identify stochastic chaotic system having advantage of good precision. This is the basic of controlling chaotic systems using controllers.
作者 张静
出处 《襄樊学院学报》 2006年第2期74-76,106,共4页 Journal of Xiangfan University
基金 湖北省教育厅科研项目(2001D69001)
关键词 随机混沌系统 贝叶斯正则化 混沌退火算法 Stochastic chaotic system Bayesian regularization Algorithms of Chaos-Annealing strategy
  • 相关文献

参考文献10

  • 1吕金虎 ... ..混沌时间序列分析及其应用[M],2002.
  • 2王心元.复杂非线性系统中的混沌[M].北京:电子工业出版社,2003.. 被引量:3
  • 3[3]WANG H,TANAKAK K,IKEDA T.Fuzzy modeling and control of chaotic system[A].Proceeding of IEEE Int.Symp.Circuits and Systems[C].1996,3:209-212. 被引量:1
  • 4[4]CHEN L,CHEN G R.Modeling,prediction and control of uncertain chaotic systems based on times series[J].IEEE Trans.Circuits and Systems.I,2000,47(10):1527-1531. 被引量:1
  • 5[5]RAMAZAN GENCAY.Nonlinear prediction of noise time series with feedforward and networks[J].Physics Letters A,1994,187:397-403. 被引量:1
  • 6[6]RAMAZAN GENCAY,LIU TUNG.Nonlinear modeling and prediction with feedforward and recurrent networks[J].Physics D,1997,108:119-134. 被引量:1
  • 7郭会军,刘君华.基于GA-Fuzzy的混沌系统辨识研究[J].系统仿真学报,2004,16(6):1323-1325. 被引量:6
  • 8丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,2003.55-87. 被引量:24
  • 9张静.基于混沌搜索优化方法的PID控制器设计[J].襄樊学院学报,2001,22(2):63-66. 被引量:6
  • 10周明,孙树栋编著..遗传算法原理及应用[M].北京:国防工业出版社,1999:203.

二级参考文献12

  • 1[3]熊光楞,肖田元,张燕云.连续系统仿真与离散时间系统仿真[M].北京:清华大学出版社,1991. 被引量:1
  • 2Goldberg D. Genetic Algorithm in Search Optimization and Machine Learning [M]. Adddison-Wesley, Reading, 1989. 被引量:1
  • 3Magne Setnes, Hans Roubos. GA-Fuzzy Modeling and Classification: Complexity and Performance [J]. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 509-522. 被引量:1
  • 4Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series [J]. Physics Letter A, 1994, 185(1): 77-85. 被引量:1
  • 5Tanaka K, Ikeda T, Wang H O. A Unified Approach to Controlling Chaos via an LMI-Based Fuzzy Control System Design [J]. IEEE Transaction on Circuits and Systems. I, 1998, 45(10): 1021-1040. 被引量:1
  • 6Chen G R. Control and synchronization of chaotic systems (a bibliography) [EB/OL]. ECE Department, Univ. Houston, TX, available from ftp: ftp.erg.uh.edu/pub/TeX/chaos.tex (login name ''anonymous'' and password: your email address.). 被引量:2
  • 7Wang H, Tanaka K, Ikeda T. Fuzzy modeling and control of chaotic systems [A]. Proceedings of IEEE Int. Symp. Circuits and Systems [C]. 1996, 3: 209-212. 被引量:1
  • 8Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Trans. Syst, Man, Cybernetics, 1985, 15: 116-132. 被引量:2
  • 9Chen L, Chen G R. Fuzzy Modeling, Prediction, and Control of Uncertain Chaotic Systems Based on Times Series [J]. IEEE Trans. Circuits and Systems. I, 2000, 47(10): 1527-1531. 被引量:1
  • 10Ramazan Gencay. Nonlinear prediction of noise time series with feedforward networks [J]. Physics Letters A, 1994, 187: 397-403. 被引量:1

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部