期刊文献+

ON HYDRODYNAMIC INSTABILITIES,CHAOS AND PHASE TRANSITION 被引量:9

ON HYDRODYNAMIC INSTABILITIES,CHAOS AND PHASE TRANSITION
下载PDF
导出
摘要 Ellipticity as the underlying mechanism for instabilities of physical systems is highlighted in the study of model nonlinear evolution equations with dissipation and the study of phase transition in Van der Waals fluid. Interesting results include spiky solutions, chaotic behavior in the context of partial differential equations, as well as the nucleation process due to ellipticity in phase transition. Ellipticity as the underlying mechanism for instabilities of physical systems is highlighted in the study of model nonlinear evolution equations with dissipation and the study of phase transition in Van der Waals fluid. Interesting results include spiky solutions, chaotic behavior in the context of partial differential equations, as well as the nucleation process due to ellipticity in phase transition.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1996年第1期1-14,共14页 力学学报(英文版)
关键词 ELLIPTICITY hydrodynamic instabilities CHAOS phase transition ellipticity hydrodynamic instabilities chaos phase transition
  • 相关文献

参考文献17

  • 1谢定裕.ELEMENTAL MECHANISMS OF HYDRODYNAMIC INSTABILITIES[J].Acta Mechanica Sinica,1994,10(3):193-202. 被引量:3
  • 2Haitao Fan.A limiting “viscosity” approach to the Riemann problem for materials exhibiting a change of phase(II)[J]. Archive for Rational Mechanics and Analysis . 1992 (4) 被引量:1
  • 3M. Slemrod.A limiting “viscosity” approach to the Riemann problem for materials exhibiting change of phase[J]. Archive for Rational Mechanics and Analysis . 1989 (4) 被引量:1
  • 4M. Slemrod.Admissibility criteria for propagating phase boundaries in a van der Waals fluid[J]. Archive for Rational Mechanics and Analysis . 1983 (4) 被引量:1
  • 5Tang,SQ. Dissipative nonlinear evolution equations and chaos . 1995 被引量:1
  • 6Hsieh,DY,Wei-zang,Chien.Ill-posed problems, instability and chaos. Proc 2nd Int Conf on Nonlinear Mechanics, Beijing, China August 23–26, 1993 . 1993 被引量:1
  • 7Keefe L R.Dynamics of perturbed waretrain solutions the Ginzhurg-Landau equation. Studies in Applied Mathematics . 1985 被引量:1
  • 8Hsieh D Y.On partial differential equations related to Lorenz system. Journal of Mathematical Physics . 1987 被引量:1
  • 9Kuramoto Y,Tsuzuki T.On the formation of dissipative structures in reaction_diffusion systems. Progress of Theoretical Physics . 1975 被引量:1
  • 10Hsiao,L,Jian,H. Global smooth solutions to the spatially periodic cauchy problem for dissipative nonlinear evolution equations . 1995 被引量:1

共引文献2

同被引文献32

引证文献9

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部