摘要
In this paper, we consider the global existence and the asymptotic behavior of solutions to the Cauchy problem for the following nonlinear evolution equations with ellipticity and dissipative effects: {ψt=-(1-α)ψ-θx+αψxx, θt=-(1-α)θ+νψx+(ψθ)x+αθxx(E) with initial data (ψ,θ)(x,0)=(ψ0(x),θ0(x))→(ψ±,θ±)as x→±∞ where α and ν are positive constants such that α 〈 1, ν 〈 4α(1 - α). Under the assumption that |ψ+ - ψ-| + |θ+ - θ-| is sufficiently small, we show the global existence of the solutions to Cauchy problem (E) and (I) if the initial data is a small perturbation. And the decay rates of the solutions with exponential rates also are obtained. The analysis is based on the energy method.
In this paper, we consider the global existence and the asymptotic behavior of solutions to the Cauchy problem for the following nonlinear evolution equations with ellipticity and dissipative effects: {ψt=-(1-α)ψ-θx+αψxx, θt=-(1-α)θ+νψx+(ψθ)x+αθxx(E) with initial data (ψ,θ)(x,0)=(ψ0(x),θ0(x))→(ψ±,θ±)as x→±∞ where α and ν are positive constants such that α 〈 1, ν 〈 4α(1 - α). Under the assumption that |ψ+ - ψ-| + |θ+ - θ-| is sufficiently small, we show the global existence of the solutions to Cauchy problem (E) and (I) if the initial data is a small perturbation. And the decay rates of the solutions with exponential rates also are obtained. The analysis is based on the energy method.
基金
The research is supported by Program for New Century Excellent Talents in University #NCET-04-0745
the Key Project of the National Natural Science Foundation of China #10431060
the Key Project of Chinese Ministry of Education #104128