摘要
In order to research the plastic performance of sheet going through the drawbead and the simple tensile test of sheet, the influence of drawbead structure parameters on sheet performance and the subsequent performance of the sheet were performed to investigate the residual deformation characteristics of the sheet through different drawbead structures, and also the influences of drawbead structures and geometry parameters on pre-deformation and subsequent forming characters of sheet were analyzed. The results show that the pre-deformation decreases with the increase of the round corner radius, the pre-deformation increase with the increase of the height of drawbead, and the subsequent forming characteristics of sheet going through drawbead are remarkably different from undeformed sheet and these differences heavily depend on the pre-deformation. With the increases of pre-deformation, the yield ratio increases, but the subsequent elongation exponential decreases. These means deformability of the sheet is significantly reduced. As the structure of drawbead changes, the mechanical characteristics of material in different cyclic loading conditions also change. For the BUFDE+Z deep drawing steel sheet, the subsequent performance of the sheet is hardened when the pre-deformation is greater than 0.044. For the DC52D+ZF hot-galvanize steel sheet, the subsequent performance of the sheet begins to harden when the pre-deformation is greater than 0.079, and it presents that the pre-deformation is not bigger than 0.052.
In order to research the plastic performance of sheet going through the drawbead and the simple tensile test of sheet, the influence of drawbead structure parameters on sheet performance and the subsequent performance of the sheet were performed to investigate the residual deformation characteristics of the sheet through different drawbead structures, and also the influences of drawbead structures and geometry parameters on pre-deformation and subsequent forming characters of sheet were analyzed. The results show that the pre-deformation decreases with the increase of the round corner radius, the pre-deformation increase with the increase of the height of drawbead, and the subsequent forming characteristics of sheet going through drawbead are remarkably different from undeformed sheet and these differences heavily depend on the pre-deformation. With the increases of pre-deformation, the yield ratio increases, but the subsequent elongation exponential decreases. These means deformability of the sheet is significantly reduced. As the structure of drawbead changes, the mechanical characteristics of material in different cyclic loading conditions also change. For the BUFDE+Z deep drawing steel sheet, the subsequent performance of the sheet is hardened when the pre-deformation is greater than 0.044. For the DC52D+ZF hot-galvanize steel sheet, the subsequent performance of the sheet begins to harden when the pre-deformation is greater than 0.079, and it presents that the pre-deformation is not bigger than 0.052.
基金
Project(50305031) supported by the National Natural Science Foundation of China
Project(E2008000824) supported by Provincial Natural Science Foundation of Hebei