期刊文献+

基于逻辑函数的量子纠错码构造 被引量:2

原文传递
导出
摘要 本文给出了利用逻辑函数构造p-态量子码的一种方法.利用文中的构造方法,对于任意APC距离d′≥2的逻辑函数,均能构造参数为((n,K,d))p的量子纠错码.对任意的2≤d≤d′,得到K的一个下界.进一步地,文中给出了构造的量子纠错码的一组基态,以及利用此方法能够构造达到量子Singleton界的量子码的充分条件.给出了[[1,3]]_p,其中p是素数,[[6,0,4]],[[6,2,3]]_p,其中p>2是素数和[[2n,2n-2,2]]作为利用此方法构造的例子.
出处 《中国科学:信息科学》 CSCD 2010年第2期249-257,共9页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:60403004) 河南省杰出青年科学基金(批准号:0612000500)资助项目
  • 相关文献

参考文献17

  • 1LIU Tailin1,2,3, WEN Qiaoyan1 & LIU Zihui4 1. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China,2. State Key Laboratory of Integrated Services Network, Xidian University, Xi’an 710071,China,3. Shandong Finance Institute, Jinan 250014, China,4. School of Mathematical Sciences, Peking University, Beijing 100871, China.Construction of nonbinary quantum cyclic codes by using graph method[J].Science in China(Series F),2005,48(6):693-702. 被引量:8
  • 2Ohata M,Matsuura K.Constructing CSS codes with LDPC codes for the BB84 quantum key distribution protocol. . 被引量:1
  • 3Glancy S,Knill E,Vasconcelos H M.Entanglement purification of ang stabilizer state. Physical Review A Atomic Molecular and Optical Physics . 2006 被引量:1
  • 4Gottesman D.An introduction to quantum error correction and fault-tolerant quantum Computation. . 被引量:1
  • 5Feng K Q.Quantum codes[[6,2,3]]_p and[[7,3,3]]_p(p≥3 be odd prime) exist. IEEE Transactions on Information Theory . 2002 被引量:1
  • 6Yu S X,Chen Q,Oh C H.Graphical quantum error-correcting codes. . 被引量:1
  • 7Hu D,Tang W D,Zhao M S,et al.Graphical nonbinary quantum error-correcting codes. . 被引量:1
  • 8Aggarwal V,Calderbank R.Boolean functions,projection operators and quantum error correction codes. IEEE Transactions on Information Theory . 2008 被引量:1
  • 9Danielsen L E.On self-dual quantum codes,graphs,and Boolean functions. . 被引量:1
  • 10Xu Y J,Ma Z,Zhang C Y,et al.Logic function and quantum codes. . 被引量:1

二级参考文献11

  • 1[1]Wootters, W. K., Zurek, W. H., A single quantum cannot be cloned, Nature, 1982, 299: 802-803. 被引量:1
  • 2[2]Shor, P. W., Scheme for reducing decoherence in quantum memory, Phys. Rev. A, 1995, 52: 2493. 被引量:1
  • 3[3]Steane, A. M., Multiple particle interference and quantum error correction, Proc. Roy. Soc. London A, 1996, 452:2551-2557. 被引量:1
  • 4[4]Calderbank, A. R., Rains, E. M., Shor, P. W. et al., Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 1998, 44(7): 1369-1387. 被引量:1
  • 5[5]Ashikhim, A., Knill, E., Non-binary quantum stabilizer codes, IEEE Trans. Inform. Theory, 2001, 47(11): 3065-3072. 被引量:1
  • 6[6]Matsumoto, R., Uyematsu, T., Constructing quantum error-correcting codes for pm-state sysetems from classical error-correcting codes, 1999, quant-ph/9911011. 被引量:1
  • 7[7]Rains, E. M., Nonbinary quantum codes, IEEE Trans. Inform. Theory, 1999, 45(9): 1827-1832. 被引量:1
  • 8[8]Schlingemann, D., Wemer, R. F., Quantum error-correcting codes associated with graphs, Phys. Rev. A, 2001, 65: No. 012308. quant-ph/0012111. 被引量:1
  • 9[9]Feng, K. Q., Quantum Codes [[6, 2, 3]]p and [[7, 3, 3]]p(p ≥ 3) Exist, IEEE Trans. Inform. Theory, 2002, 48(8):2384-2391. 被引量:1
  • 10[10]Knill, E., Laflamme, R., A theory of quantum error-correcting codes, Phys. Rev. A, 1997, 55: 900-911. 被引量:1

共引文献7

同被引文献23

  • 1董学东,陈晓东,卢慧敏,李莉,何丽.一类BCH码的维数[J].辽宁师范大学学报(自然科学版),2007,30(2):129-130. 被引量:1
  • 2Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000. 72-145. 被引量:1
  • 3Poulin D, Tillich J P. Quantum serial turbo codes. IEEE Trans Inf Theory, 2009, 55: 2776-2798. 被引量:1
  • 4Ollivier H, Tillich J P. Trellises for stabilizer codes: de nition and uses. Phys Rev A, 2006, 74: 032304. 被引量:1
  • 5Calderbank A R, Rains E M, Shor P W, et al. Quantum error correction via codes over GF(4). IEEE Trans Inf Theory,1998, 44: 1369-1387. 被引量:1
  • 6Ketkar A, Klappenecker A, Kumar S, et al. Nonbinary stabilizer codes over nite elds. IEEE Trans Inf Theory, 2006,52: 4892-4914. 被引量:1
  • 7Aggarwal V, Calderbank A R. Boolean function, projection operators, and quantum error correcting codes. IEEE Trans Inf Theory, 2008, 54: 1700-1707. 被引量:1
  • 8Cross A, Smith G, Wehner S, et al. Codeword stabilized quantum codes. IEEE Trans Inf Theory, 2009, 55: 433-438. 被引量:1
  • 9Rahn B, Doherty A C, Mabuchi H. Exact performance of concatenated quantum codes. Phys Rev A, 2002, 66: 032304. 被引量:1
  • 10Hsieh M H, Gall F L. NP-hardness of decoding quantum error correction codes. ArXiv: quant-ph/10091319. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部