期刊文献+

Construction of nonbinary quantum cyclic codes by using graph method 被引量:8

Construction of nonbinary quantum cyclic codes by using graph method
原文传递
导出
摘要 Using the graph method proposed by Schlingemann and Werner, this paper introduces a technique to construct nonbinary quantum cyclic codes and provides a specific example. We also construct the quantum codes [[8, 2, 4]]p and [[n, n - 2, 2]]p for all odd primes p by the graph method. Using the graph method proposed by Schlingemann and Werner, this paper introduces a technique to construct nonbinary quantum cyclic codes and provides a specific example. We also construct the quantum codes [[8, 2, 4]]p and [[n, n - 2, 2]]p for all odd primes p by the graph method.
出处 《Science in China(Series F)》 2005年第6期693-702,共10页 中国科学(F辑英文版)
基金 This work was supported by the National Natural Science Foundation of China(Grant No.60373059) the National Research Foundation for the Doctoral Program of Higher Education of China(Grant No.20040013007) the ISN Open Foundation, and the National Laboratory for Moderm Communications Science Foun-dation of China (Grant No.51436020103DZ4001).
关键词 nonbinary quantum stabilizer codes quantum cyclic codes nonbinary quantum stabilizer codes, quantum cyclic codes
  • 相关文献

参考文献11

  • 1[1]Wootters, W. K., Zurek, W. H., A single quantum cannot be cloned, Nature, 1982, 299: 802-803. 被引量:1
  • 2[2]Shor, P. W., Scheme for reducing decoherence in quantum memory, Phys. Rev. A, 1995, 52: 2493. 被引量:1
  • 3[3]Steane, A. M., Multiple particle interference and quantum error correction, Proc. Roy. Soc. London A, 1996, 452:2551-2557. 被引量:1
  • 4[4]Calderbank, A. R., Rains, E. M., Shor, P. W. et al., Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, 1998, 44(7): 1369-1387. 被引量:1
  • 5[5]Ashikhim, A., Knill, E., Non-binary quantum stabilizer codes, IEEE Trans. Inform. Theory, 2001, 47(11): 3065-3072. 被引量:1
  • 6[6]Matsumoto, R., Uyematsu, T., Constructing quantum error-correcting codes for pm-state sysetems from classical error-correcting codes, 1999, quant-ph/9911011. 被引量:1
  • 7[7]Rains, E. M., Nonbinary quantum codes, IEEE Trans. Inform. Theory, 1999, 45(9): 1827-1832. 被引量:1
  • 8[8]Schlingemann, D., Wemer, R. F., Quantum error-correcting codes associated with graphs, Phys. Rev. A, 2001, 65: No. 012308. quant-ph/0012111. 被引量:1
  • 9[9]Feng, K. Q., Quantum Codes [[6, 2, 3]]p and [[7, 3, 3]]p(p ≥ 3) Exist, IEEE Trans. Inform. Theory, 2002, 48(8):2384-2391. 被引量:1
  • 10[10]Knill, E., Laflamme, R., A theory of quantum error-correcting codes, Phys. Rev. A, 1997, 55: 900-911. 被引量:1

同被引文献21

  • 1樊恽,刘宏伟,Lluis Puig.Generalized Hamming weights and equivalences of codes[J].Science China Mathematics,2003,46(5):690-695. 被引量:2
  • 2WANG WeiYang1,FENG RongQuan1 & FENG KeQin2 1School of Mathematical Sciences,Peking University,Beijing 100871,China,2Department of Mathematical Sciences,Tsinghua University,Beijing 100084,China.Inhomogenous quantum codes (Ⅰ):additive case[J].Science China Mathematics,2010,53(9):2501-2510. 被引量:4
  • 3Ohata M,Matsuura K.Constructing CSS codes with LDPC codes for the BB84 quantum key distribution protocol. . 被引量:1
  • 4Glancy S,Knill E,Vasconcelos H M.Entanglement purification of ang stabilizer state. Physical Review A Atomic Molecular and Optical Physics . 2006 被引量:1
  • 5Gottesman D.An introduction to quantum error correction and fault-tolerant quantum Computation. . 被引量:1
  • 6Feng K Q.Quantum codes[[6,2,3]]_p and[[7,3,3]]_p(p≥3 be odd prime) exist. IEEE Transactions on Information Theory . 2002 被引量:1
  • 7Yu S X,Chen Q,Oh C H.Graphical quantum error-correcting codes. . 被引量:1
  • 8Hu D,Tang W D,Zhao M S,et al.Graphical nonbinary quantum error-correcting codes. . 被引量:1
  • 9Aggarwal V,Calderbank R.Boolean functions,projection operators and quantum error correction codes. IEEE Transactions on Information Theory . 2008 被引量:1
  • 10Danielsen L E.On self-dual quantum codes,graphs,and Boolean functions. . 被引量:1

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部