期刊文献+

一种改进高光谱图像噪声评估的MNF变换算法 被引量:3

原文传递
导出
摘要 在光谱维变换法是高光谱图像特征提取和数据挖掘的重要工具,而最大噪声分数(MNF)变换更是应用于高光谱图像分类和混合像元分解当中最为常用的光谱维变换法之一.由于部分样本光谱特征可能被局部波段噪声淹没,在同类地物十分聚集的情况下,首先对高光谱图像做MNF变换处理会比做主成分(PC)变换处理的分类结果更优.但通过实验证明,如果不同类别地物混杂在一起,混杂程度对MNF变换结果的分类精度有着显著影响.随后文中从理论上阐明该影响存在的原因,并针对高光谱图像中地物混杂的情况,提出了一种改进噪声协方差矩阵(NCM)评估的MNF变换算法,并通过后续模拟数据和真实数据实验证明该变换法相对于经典MNF变换,特征提取效果明显改善,分类精度均有所提高.
出处 《中国科学(F辑:信息科学)》 CSCD 2009年第12期1305-1313,共9页
基金 国家重点基础研究发展计划(批准号:2009CB723902) 国家高技术研究发展计划(批准号:2007AA12Z138)资助项目
  • 相关文献

参考文献18

  • 1张兵,陈正超,郑兰芬,童庆禧,刘银年,杨一德,薛永祺.基于高光谱图像特征提取与凸面几何体投影变换的目标探测[J].红外与毫米波学报,2004,23(6):441-445. 被引量:21
  • 2张兵..时空信息辅助下的高光谱数据挖掘[D].中国科学院遥感应用研究所,2002:
  • 3Nirmal K,John F M.Spectral unmixing. IEEE Signal Processing Magazine . 2002 被引量:1
  • 4Green AA,Berman M,Switzer P,et al.A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing . 1988 被引量:1
  • 5Olsen S I.Estimation of noise in images: an evaluation. CVGIP Graphical Models and Image Processing . 1993 被引量:1
  • 6Bo-Cai Gao.An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers. Remote Sensing of Environment . 1993 被引量:1
  • 7David G Goodenough,Andrew Dyk,K Olaf Niemann,et al.Processing Hyperion and ALI for Forest Classification. IEEETrans.Geosci.Remote Sensing . 2003 被引量:1
  • 8Jacob T. Mundt Nancy F. Glenn Keith T. Weber Timothy S. Prather Lawrence W. Lass and Jeffrey Pettingill.Discrimination of hoary cress and determination of its detection limits via hyperspectral image processing and accuracy assessment techniques. Remote Sensing of Environment . 2005 被引量:1
  • 9Lee J B,et al.Enhancement of High Spectral Resolution Remote Sensing Data by a Noise-Adjusted Principal Compon-ents Transform. IEEE Transactions on Geoscience and Remote Sensing . 1990 被引量:1
  • 10Nielsen A A.Analysis of regularly and irregularly sampled spatial, multivariate, and multi-temporal data. . 1994 被引量:1

二级参考文献7

  • 1Xiuping Jia. Classification techniques for hyperspectal remote sensing image data[D]. PhD thesis of University of New South Wales, 1996: 17-24. 被引量:1
  • 2Ifarraguerri, Chang C I. Multispectral and hyperspectral image analysis with convex cones analysis[J]. IEEE Trans.on Geoscience and Remote Sensing, 1999, 37(2): 756-770. 被引量:1
  • 3Jimenez, Landgrebe. Hyperspectral data analysis and supervised feature reduction via projection pursuit[J]. IEEE Trans. on Geoscience and Remote Sensing, 1999, 37(6): 2653-2667. 被引量:1
  • 4Ifarraguerri,Chang C I. Multispectral and hyperspectral image analysis with projection pursuit[J]. IEEE Trans.on Geoscience and Remote Sensing, 2000, 38(6): 2529-2538. 被引量:1
  • 5Chiang S S, Chang C I, Ginsberg I W. Unsupervised subpixel target detection for hyperspectral images using projection pursuit[J]. IEEE Trans.on Geoscience and Remote Sensing, 2001, 39(7): 1380-1391. 被引量:1
  • 6Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data: in Summaries, Fifth JPL Airborne Earth Science Workshop, JPL Publication[C]. 95-1,1: 23-26. 被引量:1
  • 7Winter Michael E. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data[J]. Proc of SPIE, Imaging Spectrometry V, 1999, 3753: 266-277. 被引量:1

共引文献20

同被引文献25

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部