期刊文献+

采用多分辨率分解的高光谱图像异常检测 被引量:8

Anomaly detection for hyperspectral image based on multiresolution decomposition
下载PDF
导出
摘要 针对异常检测中背景杂波的干扰问题,提出了一种基于多分辨率分解的异常检测方法。首先对高光谱图像进行分解,将其划分为不同频率的子块;其次,构造核函数来抑制背景杂波;最后将检测算子应用于处理后的子块,重构图像,检测出异常目标。由于图像被分解到不同频带,子块中包含的背景信息大大减少,此时对子块进行检测,很好地削弱了背景杂波对搜索异常信号的干扰;此外,使用构造的核函数对子块中的背景进行抑制,抑制后的异常信号远离背景,更易检出异常目标。实验结果进一步验证了该方法具有很好的异常检测性能。 According to the interference of background clutter on the anomaly detection,a novel anomaly detection method for hyperspectral images based on multi-resolution decomposition was presented.Firstly,the hyperspectral image was decomposed into a series of different frequency sub-bands.Secondly,the background clutter of the sub-bands were suppressed by the structured kernel function.Finally,the detection operator was used in the sub-bands,and the detection result was obtained by reconstructing the sub-bands.The background information was greatly decreased due to the process of multi-resolution decomposition,following which the interference of the background clutter was well weakened for the anomaly signal detection by use of the detection operator.Moreover,after suppressing the background clutter using the structured kernel function,the anomaly signals get far away from the background and can be detected more easily.The experimental results prove the validity of this method.
出处 《红外与激光工程》 EI CSCD 北大核心 2011年第3期570-575,共6页 Infrared and Laser Engineering
基金 国家自然科学基金资助项目(60777042)
关键词 异常检测 高光谱 多分辨率分解 背景抑制 核函数 anomaly detection hyperspectral multiresolution decomposition background suppression kernel function
  • 相关文献

参考文献10

  • 1李智勇,郁文贤.低维超平面结构在高光谱图像异常检测中的应用[J].红外与激光工程,2009,38(2):194-199. 被引量:9
  • 2Reed I S, Yu X L. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990: 38(10): 1760-1770. 被引量:1
  • 3Kwon H, Nasrabadi N M. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery [J]. 1EEE Transactions on Geoscienee and Remote Sensing, 2005, 43 (2): 388-397. 被引量:1
  • 4Stein D W J, Beaven S G, Hoff L E, et al. Anomaly detection from hyperspectral imagery [J]. IEEE Signal Processing Magazine, 2002, 19(1): 58-69. 被引量:1
  • 5Chiang S S, Chang C I, Ginsberg I W. Unsupervised target detection in hyperspectral images using projection pursuit [J]. IEEE Transactions on Geoscienee and Remote Sensing, 2001: 39(7): 1380-1391. 被引量:1
  • 6张兵,陈正超,郑兰芬,童庆禧,刘银年,杨一德,薛永祺.基于高光谱图像特征提取与凸面几何体投影变换的目标探测[J].红外与毫米波学报,2004,23(6):441-445. 被引量:21
  • 7Simoncelli E P, Freeman W T. The steerable pyramid: a flexible architecture for multi-scale derivative computation[J]. IEEE International Conference on Image Processing, 1995:3 (23-26): 444-447. 被引量:1
  • 8Manolakis D, Marden D, Shaw G A. Hyperspectral image processing for automatic target detection applications [J]. Lincoln Laboratory Journal, 2003: 14(1): 79-116. 被引量:1
  • 9Manolakis D, Marden D, Shaw G A. Detection algorithms for hyperspectral imaging applications[J]. IEEE Signal Processing Magazine, 2002, 19(1): 29-43. 被引量:1
  • 10江小平,陈少波,张华,刘建国.一维均值反差滤波的小目标快速检测算法[J].红外与激光工程,2010,39(6):1157-1161. 被引量:3

二级参考文献17

  • 1邹玉兰,汪国有,张磊.基于目标区域特性的海面小目标检测快速算法[J].自动化学报,2005,31(3):427-433. 被引量:5
  • 2REN H, DU Q,WANG J,et al.Automatic target recognition for hyperspectral imagery using high-order statistics [J].IEEE Trans On Aerospace and Electronic Systems,2006,24:1372- 1385. 被引量:1
  • 3STEIN D W J, BEAVEN S G,HOFF L E,et al.Anomaly detection from hyperspectral imagery [C]//IEEE Signal Processing Magazine,2002,19: 58-69. 被引量:1
  • 4MANOLAKIS D,SHAW G.Detection algorithms for hyperspectral imaging applications [J].IEEE Signal Processing Magazine, 2002,19(7) :29-43. 被引量:1
  • 5VERVEER P J,DUIN R P W.An evaluation of intrinsic dimensionality estimators [J].IEEE Trans On Pattern Analysis and Machine Intelligence,1995,17(1):81-85. 被引量:1
  • 6BRUSKE J, SOMMER G.Intrinsic dimensionality estimation with optimally topology preserving maps[J].IEEE Trans On Pattern Analysis and Machine Intelligence, 1998, 20(5) : 572-575. 被引量:1
  • 7PLAZA A,MARTINEZ P,PEREZ R,et al.Spatial/spectral endmember extraction by multimensional morphological operations [J].IEEE Trans On Geosd Remote Sensing, 2002, 40(9):2025-2041. 被引量:1
  • 8Xiuping Jia. Classification techniques for hyperspectal remote sensing image data[D]. PhD thesis of University of New South Wales, 1996: 17-24. 被引量:1
  • 9Ifarraguerri, Chang C I. Multispectral and hyperspectral image analysis with convex cones analysis[J]. IEEE Trans.on Geoscience and Remote Sensing, 1999, 37(2): 756-770. 被引量:1
  • 10Jimenez, Landgrebe. Hyperspectral data analysis and supervised feature reduction via projection pursuit[J]. IEEE Trans. on Geoscience and Remote Sensing, 1999, 37(6): 2653-2667. 被引量:1

共引文献30

同被引文献85

引证文献8

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部